Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Struct Funct ; 229(4): 959-970, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38502329

RESUMEN

Hemifacial spasm (HFS) is a syndrome characterized by involuntary contractions of the facial muscles innervated by the ipsilateral facial nerve. Currently, microvascular decompression (MVD) is an effective treatment for HFS. Diffusion weighted imaging (DWI) is a non-invasive advanced magnetic resonance technique that allows us to reconstruct white matter (WM) virtually based on water diffusion direction. This enables us to model the human brain as a complex network using graph theory. In our study, we recruited 32 patients with HFS and 32 healthy controls to analyze and compare the topological organization of whole-brain white matter networks between the groups. We also explored the potential relationships between altered topological properties and clinical outcomes. Compared to the HC group, the white matter network was disrupted in both preoperative and postoperative groups of HFS patients, mainly located in the somatomotor network, limbic network, and default network (All P < 0.05, FDR corrected). There was no significant difference between the preoperative and postoperative groups (P > 0.05, FDR corrected). There was a correlation between the altered topological properties and clinical outcomes in the postoperative group of patients (All P < 0.05, FDR corrected). Our findings indicate that in HFS, the white matter structural network was disrupted before and after MVD, and that these alterations in the postoperative group were correlated with the clinical outcomes. White matter alteration here described may subserve as potential biomarkers for HFS and may help us identify patients with HFS who can benefit from MVD and thus can help us make a proper surgical patient selection.


Asunto(s)
Espasmo Hemifacial , Cirugía para Descompresión Microvascular , Sustancia Blanca , Humanos , Espasmo Hemifacial/diagnóstico por imagen , Espasmo Hemifacial/cirugía , Cirugía para Descompresión Microvascular/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/cirugía , Resultado del Tratamiento , Imagen de Difusión por Resonancia Magnética , Estudios Retrospectivos
2.
J Magn Reson Imaging ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38544434

RESUMEN

BACKGROUND: The fasting-postprandial state remains an underrecognized confounding factor for quantifying cerebral blood flow (CBF) in the cognitive assessment and differential diagnosis of Alzheimer's disease (AD). PURPOSE: To investigate the effects of fasting-postprandial state on arterial spin labeling (ASL)-based CBF in AD patients. STUDY TYPE: Prospective. SUBJECTS: Ninety-two subjects (mean age = 62.5 ± 6.4 years; females 29.3%), including 30 with AD, 32 with mild cognitive impairment (MCI), and 30 healthy controls (HCs). Differential diagnostic models were developed with a 4:1 training to testing set ratio. FIELD STRENGTH/SEQUENCE: 3-T, T1-weighted imaging using gradient echo and pseudocontinuous ASL imaging using turbo spin echo. ASSESSMENT: Two ASL scans were acquired to quantify fasting state and postprandial state regional CBFs based on an automated anatomical labeling atlas. Two-way ANOVA was used to assess the effects of fasting/postprandial state and disease state (AD, MCI, and HC) on regional CBF. Pearson's correlation analysis was conducted between regional CBF and cognitive scores (Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]). The diagnostic performances of the fasting state, postprandial state, and mixed state (random mixing of the fasting and postprandial state CBF) in differential diagnosis of AD were conducted using support vector machine and logistic regression models. STATISTICAL TESTS: Two-way ANOVA, Pearson's correlation, and area under the curve (AUC) of diagnostic model were performed. P values <0.05 indicated statistical significance. RESULTS: Fasting-state CBF was correlated with cognitive scores in more brain regions (17 vs. 4 [MMSE] and 15 vs. 9 [MoCA]) and had higher absolute correlation coefficients than postprandial-state CBF. In the differential diagnosis of AD patients from MCI patients and HCs, fasting-state CBF outperformed mixed-state CBF, which itself outperformed postprandial-state CBF. DATA CONCLUSION: Compared with postprandial CBF, fasting-state CBF performed better in terms of cognitive score correlations and in differentiating AD patients from MCI patients and HCs. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.

3.
J Alzheimers Dis ; 95(3): 981-993, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638444

RESUMEN

BACKGROUND: Current technology for exploring neuroimaging markers and neural circuits of neuropsychiatric symptoms (NPS) in patients with Alzheimer's disease (AD) is expensive and usually invasive, limiting its use in clinical practice. OBJECTIVE: To investigate the cerebral morphology and perfusion characteristics of NPS and identify the spatiotemporal perfusion circuits of NPS sub-symptoms. METHODS: This nested case-control study included 102 AD patients with NPS and 51 age- and sex-matched AD patients without NPS. Gray matter volume, cerebral blood flow (CBF), and arterial transit time (ATT) were measured and generated using time-encoded 7-delay pseudo-continuous arterial spin labeling (pCASL). Multiple conditional logistic regression analysis was used to identify neuroimaging markers of NPS. The associations between the CBF or ATT of affected brain areas and NPS sub-symptoms were evaluated after adjusting for confounding factors. The neural circuits of sub-symptoms were identified based on spatiotemporal perfusion sequencing. RESULTS: Lower Mini-Mental State Examination scores (p < 0.001), higher Caregiver Burden Inventory scores (p < 0.001), and higher CBF (p = 0.001) and ATT values (p < 0.003) of the right anteroventral thalamic nucleus (ATN) were risk factors for NPS in patients with AD. Six spatiotemporal perfusion circuits were found from 12 sub-symptoms, including the anterior cingulate gyri-temporal pole/subcortical thalamus-cerebellum circuit, insula-limbic-cortex circuit, subcortical thalamus-temporal pole-cortex circuit, subcortical thalamus-cerebellum circuit, frontal cortex-cerebellum-occipital cortex circuit, and subcortical thalamus-hippocampus-dorsal raphe nucleus circuit. CONCLUSIONS: Prolonged ATT and increased CBF of the right ATN may be neuroimaging markers for detecting NPS in patients with AD. Time-encoded pCASL could be a reliable technique to explore the neural perfusional circuits of NPS.

4.
Eur J Radiol Open ; 10: 100495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396489

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.

5.
Eur J Med Res ; 26(1): 88, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362444

RESUMEN

BACKGROUND: Epilepsy is one of the most common chronic neurological diseases. Despite the great variety and prevalence of antiepileptic drug treatments, one-third of epilepsies remain drug resistant. The frontal lobe is extensive, and frontal lobe seizures are difficult to locate, which increases the difficulty of the preoperative localization of the epileptogenic zone. CASE PRESENTATION: Two previously healthy girls with refractory frontal lobe epilepsy showed significant perfusion abnormalities in the right frontal lobe using the cerebral blood perfusion (CBF) quantitative analysis system. They became seizure-free after lesionectomy of the frontal lobe by ASL combined with electroencephalography (EEG) rapid localization. The histopathological diagnosis was focal cortical dysplasia (FCD) type IIa and IIb. CONCLUSIONS: The positive outcome suggests that the combined use of ASL with EEG could be a beneficial option for the presurgical evaluation of pediatric epilepsy.


Asunto(s)
Arterias/patología , Epilepsia Refractaria/patología , Electroencefalografía/métodos , Epilepsia del Lóbulo Frontal/patología , Marcadores de Spin , Niño , Preescolar , Epilepsia Refractaria/cirugía , Epilepsia del Lóbulo Frontal/cirugía , Femenino , Humanos , Pronóstico
6.
Front Psychiatry ; 12: 687739, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305683

RESUMEN

Background: Depression is common in Alzheimer's disease (AD) with an unclear neural mechanism. This study aimed to investigate the underlying cerebral perfusion associated with depression in AD and evaluate its clinical significance. Method: Twenty-one AD patients and 21 healthy controls (HCs) were enrolled in this study. The depressive symptom was defined according to the Hamilton Depression Rating Scale (HAMD). Nine patients were diagnosed as AD with depression symptoms (HAMD >7). Three-dimensional pseudocontinuous arterial spin labeling MR imaging was conducted to measure regional cerebral blood flow (CBF). Neuropsychological tests covered cognition and depressive scores. Between-group comparisons on clinical variables and regional CBFs, relationship between regional CBF and depressive score, and identification of AD patients with depression were performed using covariance analysis, linear regression, and receiver operating characteristic (ROC) analysis, respectively. Results: Compared with HCs, AD patients without depression exhibited lower gray matter CBF (p = 0.016); compared with AD patients without depression, AD patients with depression had higher CBF in the right supplementary motor area (39.23 vs. 47.91 ml/100 g/min, p = 0.017) and right supramarginal gyrus (35.54 vs. 43.85 ml/100 g/min, p = 0.034). CBF in the right supplementary motor area was correlated with depressive score (ß = 0.46, p = 0.025). The combination of CBF in the right supplementary motor area and supramarginal gyrus and age could identify AD patients with depression from those without depression with a specificity of 100%, sensitivity of 66.67%, accuracy of 85.71%, and area under the curve of 0.87. Conclusions: Our findings suggested that hyperperfusion of the right supplementary motor area and right supramarginal gyrus were associated with depression syndrome in AD, which could provide a potential neuroimaging marker to evaluate the depression state in AD.

7.
Front Neurosci ; 15: 823876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35250438

RESUMEN

OBJECTIVES: This study analyzed differences in the mean cerebral blood flow (mCBF) and arterial transit time (ATT) of the anterior and posterior circulations between patients with intracranial atherosclerotic stenosis (ICAS) and control subjects. We also investigated the correlation between ATT and mCBF in the two groups, and evaluated whether the blood flow velocity of the extracranial carotid/vertebral arteries can influence mCBF. METHODS: A total of 32 patients with ICAS were prospectively enrolled at the Radiology Department of the China-Japan Friendship Hospital between November 2020 and September 2021. All patients had extensive arterial stenosis, with 17 having cerebral arterial stenosis in the anterior circulation and 15 in the posterior circulation. Thirty-two healthy subjects were enrolled as a control group. Enhanced arterial spin labeling (eASL) imaging was performed using a 3.0-T GE magnetic resonance imaging scanner, and all patients underwent carotid and vertebral Doppler ultrasound examinations. CereFlow software was used for post-processing of the eASL data, to obtain cerebral perfusion parameters such as mCBF and ATT. Independent samples t-tests were used to analyze and compare mCBF and ATT of the anterior circulation (frontal lobe, parietal lobe, and insula) and posterior circulation (occipital lobe, cerebellum) between the patient and control groups. The relationships of ATT and mCBF in the two groups were evaluated with Pearson's correlation. The blood flow velocity of the extracranial internal carotid/vertebral arteries, including the peak systolic velocity (PSV), end diastolic velocity (EDV), mean PSV (mPSV), and mean EDV (mEDV), was compared between the control and study groups using t-tests. Multiple linear regression analysis was then applied to determine the factors associated with mCBF in the two groups. RESULTS: The mCBFs of the anterior and posterior circulations in the patient group were lower than those of the control group. The ATTs in the patient group were all significantly longer than those of the control group (p < 0.05). Except for the insula in the control group, significant correlations were found between ATT and mCBF in all other investigated locations in the two groups (p < 0.05). The blood flow velocity of the extracranial internal carotid/vertebral arteries differed significantly between the control and patient groups (p < 0.05). The multiple linear regression analysis revealed that in patients with ICAS, mPSV of the vertebral arteries and local ATT correlated with mCBF of the occipital lobes and the cerebellum, respectively (p < 0.05). In contrast, there was no significant correlation within the anterior circulation (frontal lobes, parietal lobes, and insula). CONCLUSION: There was a significant relationship between ATT and mCBF in patients with ICAS. Extracranial blood flow may influence intracranial hemodynamics in the posterior circulation in patients with ICAS. The maintenance of extracranial blood flow is of great significance in the preservation of intracranial hemodynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...