Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Cell Metab ; 36(5): 947-968, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38718757

RESUMEN

Insulin resistance (IR) is a major pathogenic factor in the progression of MASLD. In the liver, insulin suppresses gluconeogenesis and enhances de novo lipogenesis (DNL). During IR, there is a defect in insulin-mediated suppression of gluconeogenesis, but an unrestrained increase in hepatic lipogenesis persists. The mechanism of increased hepatic steatosis in IR is unclear and remains controversial. The key discrepancy is whether insulin retains its ability to directly regulate hepatic lipogenesis. Blocking insulin/IRS/AKT signaling reduces liver lipid deposition in IR, suggesting insulin can still regulate lipid metabolism; hepatic glucose metabolism that bypasses insulin's action may contribute to lipogenesis; and due to peripheral IR, other tissues are likely to impact liver lipid deposition. We here review the current understanding of insulin's action in governing different aspects of hepatic lipid metabolism under normal and IR states, with the purpose of highlighting the essential issues that remain unsettled.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Insulina , Hígado , Transducción de Señal , Humanos , Insulina/metabolismo , Hígado/metabolismo , Hígado Graso/metabolismo , Animales , Metabolismo de los Lípidos , Lipogénesis
2.
Front Immunol ; 15: 1360237, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576617

RESUMEN

Comprising only 1-10% of the circulating T cell population, γδT cells play a pivotal role in cancer immunotherapy due to their unique amalgamation of innate and adaptive immune features. These cells can secrete cytokines, including interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), and can directly eliminate tumor cells through mechanisms like Fas/FasL and antibody-dependent cell-mediated cytotoxicity (ADCC). Unlike conventional αßT cells, γδT cells can target a wide variety of cancer cells independently of major histocompatibility complex (MHC) presentation and function as antigen-presenting cells (APCs). Their ability of recognizing antigens in a non-MHC restricted manner makes them an ideal candidate for allogeneic immunotherapy. Additionally, γδT cells exhibit specific tissue tropism, and rapid responsiveness upon reaching cellular targets, indicating a high level of cellular precision and adaptability. Despite these capabilities, the therapeutic potential of γδT cells has been hindered by some limitations, including their restricted abundance, unsatisfactory expansion, limited persistence, and complex biology and plasticity. To address these issues, gene-engineering strategies like the use of chimeric antigen receptor (CAR) T therapy, T cell receptor (TCR) gene transfer, and the combination with γδT cell engagers are being explored. This review will outline the progress in various engineering strategies, discuss their implications and challenges that lie ahead, and the future directions for engineered γδT cells in both monotherapy and combination immunotherapy.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T gamma-delta , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Linfocitos T , Inmunoterapia , Inmunoterapia Adoptiva , Ingeniería Celular , Neoplasias/terapia
3.
Postgrad Med J ; 100(1182): 242-251, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38223944

RESUMEN

BACKGROUND: The link between gastroesophageal reflux disease (GERD) and essential hypertension (EH) and its causal nature remains controversial. Our study examined the connection between GERD and the risk of hypertension and assessed further whether this correlation has a causal relationship. METHODS: First, we utilized the National Readmission Database including 14 422 183 participants to conduct an observational study. Dividing the population into GERD and non-GERD groups, we investigated the correlation between GERD and EH using multivariate logistic regression. Next, bidirectional two-sample Mendelian randomization was adopted. The summary statistics for GERD were obtained from a published genome-wide association study including 78 707 cases and 288 734 controls. We collected summary statistics for hypertension containing 70 651 cases and 223 663 controls from the FinnGen consortium. We assessed causality primarily by the inverse-variance weighted method with validation by four other Mendelian randomization approaches as well as an array of sensitivity analyses. RESULTS: In the unadjusted model, GERD patients had a higher risk of EH than the non-GERD group, regardless of gender (odds ratio, 1.43; 95% confidence interval: 1.42-1.43; P < .001). Further adjusting for critical confounders did not change this association. For Mendelian randomization, we found that genetically predicted GERD was causally linked to an enhanced risk of EH in inverse-variance weighted technique (odds ratio, 1.52; 95% confidence interval: 1.39-1.67; P = 3.51 × 10-18); conversely, EH did not raise the risk of GERD causally. CONCLUSIONS: GERD is a causal risk factor for EH. Further research is required to probe the mechanism underlying this causal connection.


Asunto(s)
Reflujo Gastroesofágico , Hipertensión , Humanos , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Readmisión del Paciente , Hipertensión Esencial , Hipertensión/epidemiología , Hipertensión/genética , Reflujo Gastroesofágico/epidemiología , Reflujo Gastroesofágico/genética
4.
Cancer Metab ; 11(1): 24, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057929

RESUMEN

BACKGROUND: The relationship between obesity and non-Hodgkin's lymphoma (NHL) was controversial, which may be due to the crudeness definition of obesity based on body mass index (BMI). As obesity and metabolic abnormalities often coexist, we aimed to explore whether the classification of obesity based on metabolic status can help to evaluate the real impact of obesity on the readmission of NHL. METHODS: In this retrospective cohort study, utilizing the 2018 Nationwide Readmissions Database, we identified NHL-related index hospitalizations and followed them for non-elective readmission. The patients with NHL were classified as metabolically healthy non-obese (MHNO) and obese (MHO) and metabolically unhealthy non-obese (MUNO) and obese (MUO). Readmission rates for each phenotype were calculated at 30-day intervals. Multiple COX regression was used to analyze the association of metabolic-defined obesity with 30-day, 90-day, and 180-day readmission rates in patients with NHL. RESULTS: There were 22,086 index hospitalizations with NHL included. In the multivariate COX regression, MUNO was associated with increased 30-day (HR = 1.113, 95% CI 1.036-1.195), 90-day (HR = 1.148, 95% CI 1.087-1.213), and 180-day readmission rates (HR = 1.132, 95% CI 1.077-1.189), and MUO was associated with increased 30-day (HR=1.219, 95% CI: 1.081-1.374), 90-day (HR = 1.228, 95% CI 1.118-1.348), and 180-day readmission rates (HR = 1.223, 95% CI 1.124-1.33), while MHO had no associations with readmission rates. CONCLUSIONS: The presence of metabolic abnormalities with or without obesity increased the risk of non-selective readmission in patients with NHL. However, obesity alone had no associations with the risk of non-selective readmission, suggesting that interventions for metabolic abnormalities may be more important in reducing readmissions of NHL patients.

5.
Nat Metab ; 5(10): 1706-1725, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735236

RESUMEN

Under normal conditions, insulin promotes hepatic de novo lipogenesis (DNL). However, during insulin resistance (IR), when insulin signalling is blunted and accompanied by hyperinsulinaemia, the promotion of hepatic DNL continues unabated and hepatic steatosis increases. Here, we show that WD40 repeat-containing protein 6 (WDR6) promotes hepatic DNL during IR. Mechanistically, WDR6 interacts with the beta-type catalytic subunit of serine/threonine-protein phosphatase 1 (PPP1CB) to facilitate PPP1CB dephosphorylation at Thr316, which subsequently enhances fatty acid synthases transcription through DNA-dependent protein kinase and upstream stimulatory factor 1. Using molecular dynamics simulation analysis, we find a small natural compound, XLIX, that inhibits the interaction of WDR6 with PPP1CB, thus reducing DNL in IR states. Together, these results reveal WDR6 as a promising target for the treatment of hepatic steatosis.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Animales , Ratones , Lipogénesis/fisiología , Regulación hacia Arriba , Insulina/metabolismo
6.
Adv Sci (Weinh) ; 10(28): e2302539, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37616380

RESUMEN

The treatment of bone defects remains a significant challenge to be solved clinically. Immunomodulatory properties of orthopedic biomaterials have significance in regulating osteoimmune microenvironment for osteogenesis. A lactic acid-co-glycolic acid (PLGA) scaffold incorporates black phosphorus (BP) fabricated by 3D printing technology to investigate the effect of BP on osteoimmunomodulation and osteogenesis in site. The PLGA/BP scaffold exhibits suitable biocompatibility, biodegradability, and mechanical properties as an excellent microenvironment to support new bone formation. The studies' result also demonstrate that the PLGA/BP scaffolds are able to recruit and stimulate macrophages M2 polarization, inhibit inflammation, and promote human bone marrow mesenchymal stem cells (hBMSCs) proliferation and differentiation, which in turn promotes bone regeneration in the distal femoral defect region of steroid-associated osteonecrosis (SAON) rat model. Moreover, it is screened and demonstrated that PLGA/BP scaffolds can promote osteogenic differentiation by transcriptomic analysis, and PLGA/BP scaffolds promote osteogenic differentiation and mineralization by activating PI3K-AKT signaling pathway in hBMSC cells. In this study, it is shown that the innovative PLGA/BP scaffolds are extremely effective in stimulating bone regeneration by regulating macrophage M2 polarization and a new strategy for the development of biomaterials that can be used to repair bone defects is offered.


Asunto(s)
Osteogénesis , Andamios del Tejido , Humanos , Ratas , Animales , Fosfatidilinositol 3-Quinasas/farmacología , Regeneración Ósea , Materiales Biocompatibles/farmacología , Impresión Tridimensional
7.
Front Immunol ; 14: 1153730, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251380

RESUMEN

Background: Patients with Prader-Willi syndrome (PWS) have a reduced life expectancy due to inflammation-related disease including cardiovascular disease and diabetes. Abnormal activation of peripheral immune system is postulated as a contributor. However, detailed features of the peripheral immune cells in PWS have not been fully elucidated. Methods: Serum inflammatory cytokines were measured in healthy controls (n=13) and PWS patients (n=10) using a 65- multiplex cytokine assays. Changes of the peripheral immune cells in PWS was assessed by single-cell RNA sequencing (scRNA-seq) and high-dimensional mass cytometry (CyTOF) using peripheral blood mononuclear cells (PBMCs) from PWS patients (n=6) and healthy controls (n=12). Results: PWS patients exhibited hyper-inflammatory signatures in PBMCs and monocytes were the most pronounced. Most inflammatory serum cytokines were increased in PWS, including IL-1ß, IL-2R, IL-12p70, and TNF-α. The characteristics of monocytes evaluated by scRNA-seq and CyTOF showed that CD16+ monocytes were significantly increased in PWS patients. Functional pathway analysis revealed that CD16+ monocytes upregulated pathways in PWS were closely associated with TNF/IL-1ß- driven inflammation signaling. The CellChat analysis identified CD16+ monocytes transmitted chemokine and cytokine signaling to drive inflammatory process in other cell types. Finally, we explored the PWS deletion region 15q11-q13 might be responsible for elevated levels of inflammation in the peripheral immune system. Conclusion: The study highlights that CD16+ monocytes contributor to the hyper-inflammatory state of PWS which provides potential targets for immunotherapy in the future and expands our knowledge of peripheral immune cells in PWS at the single cell level for the first time.


Asunto(s)
Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/complicaciones , Síndrome de Prader-Willi/metabolismo , Monocitos/metabolismo , Leucocitos Mononucleares/metabolismo , Transcriptoma , Citocinas/genética , Inflamación/complicaciones
8.
Front Genet ; 14: 1004481, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007970

RESUMEN

Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high morbidity and fatality rate. Traditional diagnostic methods for HCC are primarily based on clinical presentation, imaging features, and histopathology. With the rapid development of artificial intelligence (AI), which is increasingly used in the diagnosis, treatment, and prognosis prediction of HCC, an automated approach to HCC status classification is promising. AI integrates labeled clinical data, trains on new data of the same type, and performs interpretation tasks. Several studies have shown that AI techniques can help clinicians and radiologists be more efficient and reduce the misdiagnosis rate. However, the coverage of AI technologies leads to difficulty in which the type of AI technology is preferred to choose for a given problem and situation. Solving this concern, it can significantly reduce the time required to determine the required healthcare approach and provide more precise and personalized solutions for different problems. In our review of research work, we summarize existing research works, compare and classify the main results of these according to the specified data, information, knowledge, wisdom (DIKW) framework.

9.
Proc Natl Acad Sci U S A ; 120(18): e2120255119, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094143

RESUMEN

Households' willingness to pay (WTP) for water quality improvements-representing their economic value-depends on where improvements occur. Households often hold higher values for improvements close to their homes or iconic areas. Are there other areas where improvements might hold high value to individual households, do effects on WTP vary by type of improvement, and can these areas be identified even if they are not anticipated by researchers? To answer these questions, we integrated a water quality model and map-based, interactive choice experiment to estimate households' WTP for water quality improvements throughout a river network covering six New England states. The choice experiment was implemented using a push-to-web survey over a sample of New England households. Voting scenarios used to elicit WTP included interactive geographic information system (GIS) maps that illustrated three water quality measures at various zoom levels across the study domain. We captured data on how respondents maneuvered through these maps prior to answering the value-eliciting questions. Results show that WTP was influenced by regionwide quality improvements and improvements surrounding each respondent's home, as anticipated, but also by improvements in individualized locations identifiable via each respondent's map interactions. These spatial WTP variations only appear for low-quality rivers and are focused around particular areas of New England. The study shows that dynamic map interactions can convey salient information for WTP estimation and that predicting spatial WTP heterogeneity based primarily on home or iconic locations, as typically done, may overlook areas where water quality has high value.

10.
Cell Metab ; 35(4): 585-600.e5, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36931274

RESUMEN

Breakthrough SARS-CoV-2 infections of vaccinated individuals are being reported globally, resulting in an increased risk of hospitalization and death among such patients. Therefore, it is crucial to identify the modifiable risk factors that may affect the protective efficacy of vaccine use against the development of severe COVID-19 and thus to initiate early medical interventions. Here, in population-based studies using the UK Biobank database and the 2021 National Health Interview Survey (NHIS), we analyzed 20,362 participants aged 50 years or older and 2,588 aged 18 years or older from both databases who tested positive for SARS-COV-2, of whom 33.1% and 67.7% received one or more doses of vaccine, respectively. In the UK Biobank, participants are followed from the vaccination date until October 18, 2021. We found that obesity and metabolic abnormalities (namely, hyperglycemia, hyperlipidemia, and hypertension) were modifiable factors for severe COVID-19 in vaccinated patients (all p < 0.05). When metabolic abnormalities were present, regardless of obesity, the risk of severe COVID-19 was higher than that of metabolically normal individuals (all p < 0.05). Moreover, pharmacological interventions targeting such abnormalities (namely, antihypertensive [adjusted hazard ratio (aHR) 0.64, 95% CI 0.48-0.86; p = 0.003], glucose-lowering [aHR 0.55, 95% CI 0.36-0.83; p = 0.004], and lipid-lowering treatments [aHR 0.50, 95% CI 0.37-0.68; p < 0.001]) were significantly associated with a reduced risk for this outcome. These results show that more proactive health management of patients with obesity and metabolic abnormalities is critical to reduce the incidence of severe COVID-19 after vaccination.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vacunación , Obesidad , Factores de Riesgo
11.
Acta Biomater ; 158: 163-177, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596433

RESUMEN

Excessive production of reactive oxygen species (ROS) amplifies pro-inflammatory pathways and exacerbates immune responses, and is a key factor in the progression of osteoarthritis (OA). Therapeutic hydrogen gas (H2) with antioxidative and anti-inflammatory effects, has a potential for OA alleviation, but the targeted delivery and sustained release of H2 are still challenging. Herein, we develop an injectable calcium boride nanosheets (CBN) loaded hydrogel platform (CBN@GelDA hydrogel) as a high-payload and sustainable H2 precursor for OA treatment. The CBN@GelDA hydrogel could maintain constant physiological pH conditions which further promotes more H2 release than the CBN alone and lasts more than one week. The biocompatibility of this hydrogel with macrophages and chondrocytes is effectively enhanced. The experiments show that the CBN@GelDA hydrogel holds the ROS scavenging ability, reducing the expression of related inflammatory cytokines, lessening M1 macrophages but stimulating M2 phenotype, and thereby decreasing chondrocyte apoptosis, which facilitates to breaking of the vicious circle of OA progression. Furthermore, a single-time injection of the CBN@GelDA hydrogel markedly reduces joint destruction in OA rats. From what has been discussed above, this injectable spontaneous H2-releasing hydrogel is promising for OA treatment. STATEMENT OF SIGNIFICANCE: Oxidative stress and inflammation play the key role in the occurrence and development of osteoarthritis (OA). The system of a hydrogel loaded with H2 precursor calcium boride nanosheet (CBN), which is the first to use as an H2 precursor, integrates superior injectable and biocompatible of hydrogel and the selection of antioxidant properties of H2. This system can improve H2 release behavior and achieve a single injection into the articular cavity to alleviate the progression of OA in rats. This study of the combination of a convenient long-acting injectable hydrogel and a safe therapeutic gas is of great value for improving the quality of life of clinical patients.


Asunto(s)
Osteoartritis , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Hidrogeles/química , Calcio/metabolismo , Calidad de Vida , Antioxidantes/farmacología , Compuestos de Boro/farmacología , Condrocitos/metabolismo
12.
FEBS Open Bio ; 13(1): 89-101, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36333974

RESUMEN

Type 2 diabetes (T2DM) is characterized by insulin secretion deficiencies and systemic insulin resistance (IR) in adipose tissue, skeletal muscle, and the liver. Although the mechanism of T2DM is not yet fully known, inflammation and insulin resistance play a central role in the pathogenesis of T2DM. G protein-coupled receptors (GPCRs) are involved in endocrine and metabolic processes as well as many other physiological processes. GPR50 (G protein-coupled receptor 50) is an orphan GPCR that shares the highest sequence homology with melatonin receptors. The aim of this study was to investigate the effect of GPR50 on inflammation and insulin resistance in 3T3-L1 preadipocytes. GPR50 expression was observed to be significantly increased in the adipose tissue of obese T2DM mice, while GPR50 deficiency increased inflammation in 3T3-L1 cells and induced the phosphorylation of AKT and insulin receptor substrate (IRS) 1. Furthermore, GPR50 knockout in the 3T3-L1 cell line suppressed PPAR-γ expression. These data suggest that GPR50 can attenuate inflammatory levels and regulate insulin signaling in adipocytes. Furthermore, the effects are mediated through the regulation of the IRS1/AKT signaling pathway and PPAR-γ expression.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Ratones , Células 3T3-L1 , Proteínas Portadoras/metabolismo , Inflamación/metabolismo , Insulina/metabolismo , PPAR gamma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
13.
Front Plant Sci ; 13: 999636, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531387

RESUMEN

Introduction: Although the relationships between species diversity and aboveground biomass (AGB) are highly debated in grassland ecosystems, it is not well understood how climatic factors influence AGB directly and indirectly via plant coverage and species diversity in large-scale grasslands along a topographic gradient. In doing so, we hypothesized that climatic factors would regulate plant coverage, species diversity and AGB due to maintaining plant metabolic and ecological processes, but the relationship of plant coverage with AGB would be stronger than species diversity due to covering physical niche space. Methods: To test the proposed hypothesis, we collected data for calculations of species richness, evenness, plant coverage and AGB across 123 grassland sites (i.e., the mean of 3 plots in each site) dominated by Leymus chinensis in northern China. We used a structural equation model for linking the direct and indirect effects of topographic slope, mean annual precipitation and temperature on AGB via plant coverage, species richness, and evenness through multiple complex pathways. Results: We found that plant coverage increased AGB, but species evenness declined AGB better than species richness. Topographic slope influenced AGB directly but not indirectly via plant coverage and species diversity, whereas temperature and precipitation increased with increasing topographic slope. Regarding opposing mechanisms, on the one hand, precipitation increased AGB directly and indirectly via plant coverage as compared to species richness and evenness. On the other hand, temperature declined AGB indirectly via plant coverage but increased via species evenness as compared to species richness, whereas the direct effect was negligible. Discussion: Our results show that niche complementarity and selection effects are jointly regulating AGB, but these processes are dependent on climatic factors. Plant coverage promoted the coexistence of species but depended greatly on precipitation and temperature. Our results highlight that precipitation and temperature are two key climatic drivers of species richness, evenness, plant coverage and AGB through complex direct and indirect pathways. Our study suggests that grasslands are sensitive to climate change, i.e., a decline in water availability and an increase in atmospheric heat. We argue that temperature and precipitation should be considered in grassland management for higher productivity in the context of both plant coverage and species diversity which underpin animals and human well-being.

14.
Org Biomol Chem ; 20(36): 7236-7240, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36069145

RESUMEN

A green and efficient synthesis of benzo[d][1,3]thiazines through a base-promoted cyclization reaction of o-isothiocyanato arylacetylenes with aroylacetonitriles has been developed. This protocol features high step economy and efficiency, and tolerates various functional groups. The reaction was scalable and applied for the post-modification of drugs.


Asunto(s)
Tiazinas , Ciclización
15.
J Orthop Translat ; 36: 64-74, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35979174

RESUMEN

Background: A critical size bone defect is a clinical scenario in which bone is lost or excised due to trauma, infection, tumor, or other causes, and cannot completely heal spontaneously. The most common treatment for this condition is autologous bone grafting to the defect site. However, autologous bone graft is often insufficient in quantity or quality for transplantation to these large defects. Recently, tissue engineering methods using mesenchymal stem cells (MSCs) have been proposed as an alternative treatment. However, the underlying biological principles and optimal techniques for tissue regeneration of bone using stem cell therapy have not been completely elucidated. Methods: In this study, we compare the early cellular dynamics of healing between bone graft transplantation and MSC therapy in a murine chronic femoral critical-size bone defect. We employ high-dimensional mass cytometry to provide a comprehensive view of the differences in cell composition, stem cell functionality, and immunomodulatory activity between these two treatment methods one week after transplantation. Results: We reveal distinct cell compositions among tissues from bone defect sites compared with original bone graft, show active recruitment of MSCs to the bone defect sites, and demonstrate the phenotypic diversity of macrophages and T cells in each group that may affect the clinical outcome. Conclusion: Our results provide critical data and future directions on the use of MSCs for treating critical size defects to regenerate bone.Translational Potential of this article: This study showed systematic comparisons of the cellular and immunomodulatory profiles among different interventions to improve the healing of the critical-size bone defect. The results provided potential strategies for designing robust therapeutic interventions for the unmet clinical need of treating critical-size bone defects.

16.
Immun Ageing ; 19(1): 14, 2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279175

RESUMEN

BACKGROUND: Despite the high incidence of fractures and pseudoarthrosis in the aged population, a potential role for the use of mesenchymal stem cells (MSCs) in the treatment of bone defects in elderly patients has not been elucidated. Inflammation and the innate immune system, including macrophages, play crucial roles in the differentiation and activation of MSCs. We have developed lentivirus-transduced interleukin 4 (IL4) over-expressing MSCs (IL4-MSCs) to polarize macrophages to an M2 phenotype to promote bone healing in an established young murine critical size bone defect model. In the current study, we explore the potential of IL4-MSCs in aged mice. METHODS: A 2 mm femoral diaphyseal bone defect was created and fixed with an external fixation device in 15- to 17-month-old male and female BALB/c mice. Microribbon (µRB) scaffolds (Sc) with or without encapsulation of MSCs were implanted in the defect sites. Accordingly, the mice were divided into three treatment groups: Sc-only, Sc + MSCs, and Sc + IL4-MSCs. Mice were euthanized six weeks after the surgery; subsequently, MicroCT (µCT), histochemical and immunohistochemical analyses were performed. RESULTS: µCT analysis revealed that bone formation was markedly enhanced in the IL4-MSC group. Compared with the Sc-only, the amount of new bone increased in the Sc + MSCs and Sc + IL4-MSC groups. However, no bridging of bone was observed in all groups. H&E staining showed fibrous tissue within the defect in all groups. Alkaline phosphatase (ALP) staining was increased in the Sc + IL4-MSC group. The Sc + IL4-MSCs group showed a decrease in the number of M1 macrophages and an increase in the number of M2 macrophages, with a significant increase in the M2/M1 ratio. DISCUSSION: IL4 promotes macrophage polarization to an M2 phenotype, facilitating osteogenesis and vasculogenesis. The addition of IL4-MSCs in the µRB scaffold polarized macrophages to an M2 phenotype and increased bone formation; however, complete bone bridging was not observed in any specimens. These results suggest that IL4-MSCs are insufficient to heal a critical size bone defect in aged mice, as opposed to younger animals. Additional therapeutic strategies are needed in this challenging clinical scenario.

17.
ACS Nano ; 16(1): 1421-1435, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34962119

RESUMEN

Combinatorial cancer therapies based on nanomedicine have emerged as a promising strategy to achieve potentiated treatment efficiency. Herein, cisplatin (CDDP) prodrug (Pt-CD) and a mitochondria-targeted near-infrared (NIR) photosensitizer IR780 were combined to construct a multifunctional nanomedicine IR780@Pt NPs through a supramolecular self-assembly strategy. Targeted mitochondrial dysfunction of cancer cells was sufficiently induced under NIR laser irradiation through both photothermal and photodynamic effects, inhibiting the overactive mitochondrial energy pathways of cancer cells. The mitochondrial dysfunction significantly attenuated the crosstalk between mitochondria and nucleus via the cellular ATP energy chain, leading to obvious down-regulation of the key proteins of the nucleotide excision repair (NER) pathway. Thereby, the chemotherapeutic effect of CDDP could be significantly potentiated because of reduced DNA lesion repair capacity by ERCC1-XPF nuclease system. Moreover, IR780@Pt NPs exhibited excellent NIR fluorescence and photoacoustic (PA) imaging capacity for in vivo imaging-guided NIR laser treatment. Ultimately, the IR780@Pt NPs mediated combinatorial chemophototherapy achieved potentiated anticancer efficacy against cancer cells in vitro and tumor inhibition performance in vivo. Overall, this study highlighted the significance of nanomedicine mediated targeted induction of mitochondrial dysfunction to potentiate chemotherapy for efficient combinatorial cancer therapy.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Cisplatino/farmacología , Fotoquimioterapia/métodos , Nanomedicina , Rayos Infrarrojos , Nanopartículas/uso terapéutico , Nanomedicina Teranóstica/métodos , Mitocondrias , Fototerapia/métodos , Línea Celular Tumoral
18.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34884641

RESUMEN

Fibroblasts in the synovial membrane secrete molecules essential to forming the extracellular matrix (ECM) and supporting joint homeostasis. While evidence suggests that fibroblasts contribute to the response to joint injury, the outcomes appear to be patient-specific and dependent on interactions between resident immune cells, particularly macrophages (Mφs). On the other hand, the response of Mφs to injury depends on their functional phenotype. The goal of these studies was to further explore these issues in an in vitro 3D microtissue model that simulates a pathophysiological disease-specific microenvironment. Two sources of fibroblasts were used to assess patient-specific influences: mesenchymal stem cell (MSC)- and induced pluripotent stem cell (iPSC)-derived fibroblasts. These were co-cultured with either M1 or M2 Mφs, and the cultures were challenged with polyethylene particles coated with lipopolysaccharide (cPE) to model wear debris generated from total joint arthroplasties. Our results indicated that the fibroblast response to cPE was dependent on the source of the fibroblasts and the presence of M1 or M2 Mφs: the fibroblast response as measured by gene expression changes was amplified by the presence of M2 Mφs. These results demonstrate that the immune system modulates the function of fibroblasts; furthermore, different sources of differentiated fibroblasts may lead to divergent results. Overall, our research suggests that M2 Mφs may be a critical target for the clinical treatment of cPE induced fibrosis.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Polietileno/farmacología , Artroplastia/métodos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Matriz Extracelular , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/inmunología , Fibroblastos/metabolismo , Fibrosis/tratamiento farmacológico , Fibrosis/inmunología , Fibrosis/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Células Madre Mesenquimatosas/inmunología
19.
Bioengineering (Basel) ; 8(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34821731

RESUMEN

The use of genetically modified (GM) mesenchymal stromal cells (MSCs) and preconditioned MSCs (pMSCs) may provide further opportunities to improve the outcome of core decompression (CD) for the treatment of early-stage osteonecrosis of the femoral head (ONFH). GM interleukin-4 (IL4) over-expressing MSCs (IL4-MSCs), platelet-derived growth factor (PDGF)-BB over-expressing MSCs (PDGF-BB-MSCs), and IL4-PDGF-BB co-over-expressing MSCs (IL4-PDGF-BB-MSCs) and their respective pMSCs were used in this in vitro study and compared with respect to cell proliferation and osteogenic differentiation. IL4-MSCs, PDGF-BB-MSCs, IL4-PDGF-BB-MSCs, and each pMSC treatment significantly increased cell proliferation compared to the MSC group alone. The percentage of Alizarin red-stained area in the IL4-MSC and IL4-pMSC groups was significantly lower than in the MSC group. However, the percentage of Alizarin red-stained area in the PDGF-BB-MSC group was significantly higher than in the MSC and PDGF-BB-pMSC groups. The percentage of Alizarin red-stained area in the IL4-PDGF-BB-pMSC was significantly higher than in the IL4-PDGF-BB-MSC group. There were no significant differences in the percentage of Alizarin red-stained area between the MSC and IL4-PDGF-BB-pMSC groups. The use of PDGF-BB-MSCs or IL4-PDGF-BB-pMSCs increased cell proliferation. Furthermore, PDGF-BB-MSCs promoted osteogenic differentiation. The addition of GM MSCs may provide a useful supplementary cell-based therapy to CD for treatment of ONFH.

20.
Front Cell Dev Biol ; 9: 757830, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722543

RESUMEN

Wear particles from total joint arthroplasties (TJAs) induce chronic inflammation, macrophage infiltration and lead to bone loss by promoting bone destruction and inhibiting bone formation. Inhibition of particle-associated chronic inflammation and the associated bone loss is critical to the success and survivorship of TJAs. The purpose of this study is to test the hypothesis that polyethylene particle induced chronic inflammatory bone loss could be suppressed by local injection of NF-κB sensing Interleukin-4 (IL-4) over-expressing MSCs using the murine continuous polyethylene particle infusion model. The animal model was generated with continuous infusion of polyethylene particles into the intramedullary space of the femur for 6 weeks. Cells were locally injected into the intramedullary space 3 weeks after the primary surgery. Femurs were collected 6 weeks after the primary surgery. Micro-computational tomography (µCT), histochemical and immunohistochemical analyses were performed. Particle-infusion resulted in a prolonged pro-inflammatory M1 macrophage dominated phenotype and a decrease of the anti-inflammatory M2 macrophage phenotype, an increase in TRAP positive osteoclasts, and lower alkaline phosphatase staining area and bone mineral density, indicating chronic particle-associated inflammatory bone loss. Local injection of MSCs or NF-κB sensing IL-4 over-expressing MSCs reversed the particle-associated chronic inflammatory bone loss and facilitated bone healing. These results demonstrated that local inflammatory bone loss can be effectively modulated via MSC-based treatments, which could be an efficacious therapeutic strategy for periprosthetic osteolysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...