Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Phytomedicine ; 129: 155678, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38754214

RESUMEN

BACKGROUND: How to screen and identify the effective components in the complex substance system is one of the core issues in achieving the modernization of traditional Chinese medicine (TCM) formulas. However, it is still challenging to systematically screen out the effective components from the hundreds or thousands of components in a TCM formula. PURPOSE: An innovative five-layer-funnel filtering mode stepwise integrating chemical profile, quantitative analysis, xenobiotic profile, network pharmacology and bioactivity evaluation was successfully presented to discover the effective components and implemented on a case study of Zhishi-Xiebai-Guizhi decoction (ZXG), a well-known TCM formula for coronary heart disease (CHD). METHODS: Initially, the chemical profile of ZXG was systemically characterized. Subsequently, the representative constituents were quantitatively analyzed. In the third step, the multi-component xenobiotics profile of ZXG was systemically delineated, and the prototypes absorbed into the blood were identified and designated as the primary bioavailable components. Next, an integrated network of "bioavailable components-CHD targets-pathways-therapeutic effects" was constructed, and the crucial bioavailable components of ZXG against CHD were screened out. Lastly, the bioactivities of crucial bioavailable components were further evaluated to pinpoint effective components. RESULTS: First of all, the chemical profile of ZXG was systemically characterized with the detection of 201 components. Secondly, 37 representative components were quantified to comprehensively describe its content distribution characteristics. Thirdly, among the quantified components, 24 bioavailable components of ZXG were identified based on the multi-component xenobiotic profile. Fourthly, an integrated network led to the identification of 11 crucial bioavailable components against CHD. Ultimately, 9 components (honokiol, magnolol, naringenin, magnoflorine, hesperidin, hesperetin, naringin, neohesperidin and narirutin) exhibiting myocardial protection in vitro were identified as effective components of ZXG for the first time. CONCLUSION: Overall, this innovative strategy successfully identified the effective components of ZXG for the first time. It could not only significantly contribute to elucidating the therapeutic mechanism of ZXG in the treatment of CHD, but also serve as a helpful reference for the systematic discovery of effective components as well as ideal quality markers in the quality assessment of TCM formulas.

2.
J Ethnopharmacol ; 330: 118236, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38670405

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chang-Kang-Fang (CKF), originated from traditional Chinese medicine (TCM) formulas, has been utilized to treat diarrhea predominant irritable bowel syndrome (IBS-D) based on clinical experience. However, the underlying mechanism of CKF for treating IBS-D remains unclear and need further clarification. AIM OF THE STUDY: The objective of this present investigation was to validate the efficacy of CKF on IBS-D model rats and to uncover its potential mechanism for the treatment of IBS-D. MATERIALS AND METHODS: We first established the IBS-D rat model through neonatal maternal separation (NMS) in combination with restraint stress (RS) and the administration of senna decoction via gavage. To confirm the therapeutic effect of CKF on treating IBS-D, abdominal withdrawal reflex (AWR) scores, the quantity of fecal pellets, and the fecal water content (FWC) were measured to evaluate the influence of CKF on visceral hypersensitivity and the severity of diarrhea symptom after the intragastric administration of CKF for 14 days. Subsequently, enzyme linked immunosorbent assay (ELISA) was applied to assess the effect of CKF on neuropeptides substance P (SP) and 5-hydroxytryptamine (5-HT), as well as inflammatory cytokines in serum and in intestinal tissues. Further, colonic pathological changes, the amount of colonic mast cells, and the expression level of occludin in rat colon tissues, were investigated by hematoxylin-eosin (HE) staining, toluidine blue staining, and immunohistochemistry, respectively. To explore the underlying mechanisms, alterations in colonic RNA transcriptomics for the normal, model, and CKF treatment groups were assessed using RNA sequencing (RNA-Seq). Subsequently, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot (WB), and immunofluorescence (IF) assays were applied to validate the effect of CKF on predicted pathways in vivo and in vitro. In addition, to elucidate the potential active compounds in CKF, 11 representative components found in CKF were selected, and their anti-inflammation potentials were evaluated using LPS-treated RAW264.7 cell models. RESULTS: CKF treatment significantly reduced the number of fecal pellets, attenuated visceral hypersensitivity, and decreased 5-HT and SP concentrations in serum and colon tissues, along with a reduction in colonic mast cell counts, correlating with improved symptoms in IBS-D rats. Meanwhile, CKF treatment reduced the colonic inflammatory cell infiltration, lowered the levels of IL-6, TNF-α, and IL-1ß in serum and colon tissues, and increased the occludin protein expression in colon tissues to improve inflammatory response and colonic barrier function. RNA-Seq, in conjugation with our previous network pharmacology analysis, indicated that CKF might mitigate the symptoms of IBS-D rats by inhibiting the Toll like receptor 4/Nuclear factor kappa-B/NLR family pyrin domain-containing protein 3 (TLR4/NF-κB/NLRP3) pathway, which was confirmed by WB, IF, and qRT-PCR experiments in vivo and in vitro. Furthermore, coptisine, berberine, hyperoside, epicatechin, and gallic acid present in CKF emerged as potential active components for treating IBS-D, as they demonstrated in vitro anti-inflammatory effects. CONCLUSION: Our findings demonstrate that CKF effectively improves the symptoms of IBS-D rats, potentially through the inhibition of the TLR4/NF-κB/NLRP3 pathway. Moreover, this study unveils the potential bioactive components in CKF that could be applied in the treatment of IBS-D.


Asunto(s)
Diarrea , Medicamentos Herbarios Chinos , Síndrome del Colon Irritable , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 4 , Animales , Síndrome del Colon Irritable/tratamiento farmacológico , Diarrea/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Ratas , Modelos Animales de Enfermedad , Femenino , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología
3.
Eur J Med Chem ; 269: 116342, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38531211

RESUMEN

Glucagon-like peptide-1 (GLP-1), secreted by L cells in the small intestine, assumes a central role in managing type 2 diabetes mellitus (T2DM) and obesity. Its influence on insulin secretion and gastric emptying positions it as a therapeutic linchpin. However, the limited applicability of native GLP-1 stems from its short half-life, primarily due to glomerular filtration and the inactivating effect of dipeptidyl peptidase-IV (DPP-IV). To address this, various structural modification strategies have been developed to extend GLP-1's half-life. Despite the commendable efficacy displayed by current GLP-1 receptor agonists, inherent limitations persist. A paradigm shift emerges with the advent of unimolecular multi-agonists, such as the recently introduced tirzepatide, wherein GLP-1 is ingeniously combined with other gastrointestinal hormones. This novel approach has captured the spotlight within the diabetes and obesity research community. This review summarizes the physiological functions of GLP-1, systematically explores diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects that lie ahead for GLP-1 analogs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Humanos , Péptido 1 Similar al Glucagón/agonistas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Secreción de Insulina , Obesidad/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
4.
J Chromatogr A ; 1715: 464613, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38184988

RESUMEN

Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) technology has emerged as a crucial tool for identifying components in traditional Chinese medicine (TCM). However, the characterization of the chemical profiles of TCM prescriptions (TCMPs) which often consist of multiple herbal medicines and contain diverse structural types, presents several challenges, such as component overlapping and time-consuming. In this study, a novel strategy known as the multi-module structure labelled molecular network (MSLMN), which integrates molecular networking, database annotation, and cluster analysis techniques, has been successfully proposed, which facilitates the identification of chemical constituents by leveraging a high-structural similarity ion list derived from the MSLMN. It has been effectively applied to analyze the chemical profile of Xiaoyao San (XYS), a classical TCMP. Through the MSLMN method, a total of 302 chemical constituents were identified, covering nine structural types in XYS. Furthermore, a validated and quantitative analytical method using UHPLC-QqQ-MS/MS technology was developed for 31 identified chemicals, encompassing all eight herbal medicines present in XYS, and the developed analytical approach was applied to investigate the content distribution across 40 different batches of commercially available XYS. In total, the proposed strategy has practical significance for improving the insight into the chemical profile of XYS and serves as a valuable approach for handling complex system data based on UHPLC-MS, particularly for TCMPs.


Asunto(s)
Medicamentos Herbarios Chinos , Plantas Medicinales , Medicina Tradicional China , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química
5.
Heliyon ; 10(1): e23498, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38223729

RESUMEN

The high expression of programmed death 1 (PD-1) is a hallmark of T cell exhaustion, consequently inhibiting the anti-tumor immunity, tumor-associated macrophages (TAMs) aggravate Osteosarcoma (OS) progression. However, PD-1 expression on TAMs in OS metastasis remains unclear. Here, we used scRNA-Seq of 15500 individual cells from human OS lung metastatic lesion, identified thirteen major cell clusters. Our data revealed that tumor-infiltrating lymphocytes (TILs) OS lung metastatic accompanied by accumulation of exhausted T cells and regulatory T cells (Tregs). CD3+ T cells from human OS lung metastatic exhibited lower proliferation than in primary tissue. Importantly, TAMs mainly comprise immunosuppressive M2 phenotype in OS metastasis. Mechanistically, we found that PD-1 of TAMs inhibits the phagocytic potency, further promoting the progression of OS metastasis. Therefore, the study provides a strong technical support for OS immunotherapy based on PD-1 inhibitors.

6.
Nat Commun ; 14(1): 6385, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821427

RESUMEN

Neuromorphic computing aims to emulate the computing processes of the brain by replicating the functions of biological neural networks using electronic counterparts. One promising approach is dendritic computing, which takes inspiration from the multi-dendritic branch structure of neurons to enhance the processing capability of artificial neural networks. While there has been a recent surge of interest in implementing dendritic computing using emerging devices, achieving artificial dendrites with throughputs and energy efficiency comparable to those of the human brain has proven challenging. In this study, we report on the development of a compact and low-power neurotransistor based on a vertical dual-gate electrolyte-gated transistor (EGT) with short-term memory characteristics, a 30 nm channel length, a record-low read power of ~3.16 fW and a biology-comparable read energy of ~30 fJ. Leveraging this neurotransistor, we demonstrate dendrite integration as well as digital and analog dendritic computing for coincidence detection. We also showcase the potential of neurotransistors in realizing advanced brain-like functions by developing a hardware neural network and demonstrating bio-inspired sound localization. Our results suggest that the neurotransistor-based approach may pave the way for next-generation neuromorphic computing with energy efficiency on par with those of the brain.


Asunto(s)
Memoria a Corto Plazo , Redes Neurales de la Computación , Humanos , Computadores , Electrónica , Encéfalo/fisiología
7.
World J Gastrointest Oncol ; 15(9): 1662-1672, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37746650

RESUMEN

BACKGROUND: Fibrinogen-to-albumin ratio (FAR) has been found to be of prognostic significance for several types of malignant tumors. However, less is known about the association between FAR and survival outcomes in hepatocellular carcinoma (HCC) patients. AIM: To explore the association between FAR and prognosis and survival in patients with HCC. METHODS: A total of 366 histologically confirmed HCC patients diagnosed between 2013 and 2018 in a provincial cancer hospital in southwestern China were retrospectively selected. Relevant data were extracted from the hospital information system. The optimal cutoff for baseline serum FAR measured upon disease diagnosis was established using the receiver operating characteristic (ROC) curve. Univariate and multivariate Cox proportional hazards models were used to determine the crude and adjusted associations between FAR and the overall survival (OS) of the HCC patients while controlling for various covariates. The restricted cubic spline (RCS) was applied to estimate the dose-response trend in the FAR-OS association. RESULTS: The optimal cutoff value for baseline FAR determined by the ROC was 0.081. Multivariate Cox proportional hazards model revealed that a lower baseline serum FAR level was associated with an adjusted hazard ratio of 2.43 (95% confidence interval: 1.87-3.15) in the OS of HCC patients, with identifiable dose-response trend in the RCS. Subgroup analysis showed that this FAR-OS association was more prominent in HCC patients with a lower baseline serum aspartate aminotransferase or carbohydrate antigen 125 level. CONCLUSION: Serum FAR is a prominent prognostic indicator for HCC. Intervention measures aimed at reducing FAR might result in survival benefit for HCC patients.

8.
Cancer Med ; 12(15): 16386-16404, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392173

RESUMEN

BACKGROUND: Breast cancer (BC) seriously threatens women's health. Aspirin plays a key role in the treatment and prognosis of BC. OBJECTIVE: To explore the effect of low-dose aspirin on BC radiotherapy through the mechanism of exosomes and natural killer (NK) cells. METHODS: BC cells were injected into the left chest wall to establish a BC model in nude mice. Tumor morphology and size were observed. Immunohistochemical staining for Ki-67 was used to observe the proliferation of tumor cells. TUNEL was used to detect the apoptosis of cancer cells. Protein levels of exosomal biogenesis- and secretion-related genes (Rab 11, Rab27a, Rab27b, CD63, and Alix) were detected by Western blot. Flow cytometry was used to detect apoptosis. Transwell assays were used to detect cell migration. A clonogenic assay was used to detect cell proliferation. Exosomes of BT549 and 4T1-Luc cells were extracted and observed by electron microscopy. After the coculture of exosomes and NK cells, the activity of NK cells was detected by CCK-8. RESULTS: The protein expression of genes related to exosomal genesis and secretion (Rab 11, Rab27a, Rab27b, CD63, and Alix) in BT549 and 4T1-Luc cells was upregulated under radiotherapy treatment. Low doses of aspirin inhibited exosome release from BT549 and 4T1-Luc cells and alleviated the inhibitory effect of BC cell exosomes on NK cell proliferation. In addition, knocking down Rab27a reduced the protein levels of exosome-related and secretion-related genes in BC cells, further enhancing the promotive effect of aspirin on NK cell proliferation, while overexpressing Rab27a had the opposite effect. Aspirin was combined at a radiotherapeutic dose of 10 Gy to enhance the radiotherapy sensitivity of radiotherapy-tolerant BC cells (BT549R and 4T1-LucR). Animal experiments have also verified that aspirin can promote the killing effect of radiotherapy on cancer cells and significantly inhibit tumor growth. CONCLUSION: Low doses of aspirin can inhibit the release of BC exosomes induced by radiotherapy and weaken their inhibition of NK cell proliferation, promoting radiotherapy resistance.


Asunto(s)
Exosomas , Neoplasias , Animales , Ratones , Femenino , Ratones Desnudos , Aspirina/farmacología , Proliferación Celular , Movimiento Celular , Exosomas/metabolismo , Línea Celular Tumoral , Neoplasias/metabolismo
9.
J Sep Sci ; 46(17): e2300331, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37438987

RESUMEN

An efficient strategy for the identification of potential nephroprotective substances in Zhu-Ling decoction has been established with the integration of absorbed components characterization, pharmacokinetics, and activity evaluation. A qualitative method was developed to characterize the chemical constituents absorbed components in vivo of Zhu-Ling decoction by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. A quantitative method was established and validated for the simultaneous determination of eight compounds in rat plasma by using ultra-performance liquid chromatography-triple quadruple tandem mass spectrometry. Finally, the nephroprotective activities of absorbed components with high exposure were assessed by cell survival rate, superoxide dismutase, and malondialdehyde activities in hydrogen peroxide-induced Vero cells. As a result, 111 compounds in Zhu-Ling decoction and 36 absorbed components were identified in rat plasma and urine, and poricoic acid A, poricoic acid B, alisol A, 16-oxo-alisol A, and dehydro-tumulosic acid had high exposure levels in rat plasma. Finally, poricoic acid B, poricoic acid A, 16-oxo-alisol A, and dehydro-tumulosic acid showed remarkable nephroprotective activity against Vero cells damage induced by hydrogen peroxide. Besides, superoxide dismutase and malondialdehyde activities were obviously regulated in hydrogen peroxide-induced Vero cells by treatment with the four compounds mentioned above. Therefore, these four compounds were considered to be effective substances of Zhu-Ling decoction due to their relatively high exposure in vivo and biological activity. This study provided a chemical basis for the action mechanism of Zhu-Ling decoction in the treatment of chronic kidney diseases.


Asunto(s)
Medicamentos Herbarios Chinos , Triterpenos , Chlorocebus aethiops , Ratas , Animales , Peróxido de Hidrógeno , Células Vero , Espectrometría de Masas/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión/métodos
10.
Oncogenesis ; 12(1): 25, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37147294

RESUMEN

Osteosarcoma (OS) is a rare malignant bone tumor but is one leading cause of cancer mortality in childhood and adolescence. Cancer metastasis accounts for the primary reason for treatment failure in OS patients. The dynamic organization of the cytoskeleton is fundamental for cell motility, migration, and cancer metastasis. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is an oncogene participating in various biological progress central to cancer biogenesis. However, the potential roles of LAPTM4B in OS and the related mechanisms remain unknown. Here, we established the elevated LAPTM4B expression in OS, and it is essential in regulating stress fiber organization through RhoA-LIMK-cofilin signaling pathway. In terms of mechanism, our data revealed that LAPTM4B promotes RhoA protein stability by suppressing the ubiquitin-mediated proteasome degradation pathway. Moreover, our data show that miR-137, rather than gene copy number and methylation status, contributes to the upregulation of LAPTM4B in OS. We report that miR-137 is capable of regulating stress fiber arrangement, OS cell migration, and metastasis via targeting LAPTM4B. Combining results from cells, patients' tissue samples, the animal model, and cancer databases, this study further suggests that the miR-137-LAPTM4B axis represents a clinically relevant pathway in OS progression and a viable target for novel therapeutics.

11.
J Chromatogr A ; 1702: 464045, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37236139

RESUMEN

Component overlapping and long-time consumption hinder the data processing of offline two-dimensional liquid chromatography mass spectrometry (offline 2D-LC MS) system. Although molecular networking has been commonly employed in data processing of liquid chromatography mass spectrometry (LC-MS), its application in offline 2D-LC MS is challenged by voluminous and redundant data. In light of this, for the first time, a data deduplication and visualization strategy combining hand-in-hand alignment with targeted molecular networking (TMN) for compounds annotation of offline 2D-LC MS data was developed and applied to the chemical profile of Yupingfeng (YPF), a classical traditional Chinese medicine (TCM) prescription, as a case study. Firstly, an offline 2D-LC MS system was constructed for the separation and data acquisition of YPF extract. Then the data of 12 fractions derived from YPF were deconvoluted and aligned as a whole data file by hand-in-hand alignment, resulting in a 49.2% reduction in component overlapping (from 17951 to 9112 ions) and an improvement in the MS2 spectrum quality of precursor ions. Subsequently, the MS2-similarity adjacency matrix of focused parent ions was computed by a self-building Python script, which realized the construction of an innovative TMN. Interestingly, the TMN was found to be able to efficiently distinguish and visualize the co-elution, in-source fragmentations and multi-type adduct ions in a clustering network. Consequently, a total of 497 compounds were successfully identified depending on only seven TMN analysis guided by product ions filtering (PIF) and neutral loss filtering (NLF) for the targeted compounds in YPF. This integrated strategy improved the efficiency of targeted compound discovery in offline 2D-LC MS data, also shown a huge scalability in accurate compound annotation of complex samples. In conclusion, our study developed available concepts and tools while providing a research paradigm for efficient and rapid compound annotation in complex samples such as TCM prescriptions, with YPF as an example.


Asunto(s)
Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas , Medicamentos Herbarios Chinos/química
12.
Phytochem Anal ; 34(5): 528-539, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37139685

RESUMEN

INTRODUCTION: Alismatis rhizoma (AR), a distinguished diuretic traditional Chinese herbal medicine, is widely used for the treatment of diarrhea, edema, nephropathy, hyperlipidemia, and tumors in clinical settings. Most beneficial effects of AR are attributed to the major triterpenoids, whose contents are relatively high in AR. To date, only 25 triterpenoids in AR have been characterized by LC-MS because the low-mass diagnostic ions are hardly triggered in MS, impeding structural identification. Herein, we developed an advanced data post-processing method with abundant characteristic fragments (CFs) and neutral losses (NLs) for rapid identification and classification of the major triterpenoids in AR by UPLC-Q-TOF-MSE . OBJECTIVE: We aimed to establish a systematic method for rapid identification and classification of the major triterpenoids of AR. METHODS: UPLC-Q-TOF-MSE coupled with an advanced data post-processing method was established to characterize the major triterpenoids of AR. The abundant CFs and NLs of different types of triterpenoids were discovered and systematically summarized. The rapid identification and classification of the major triterpenoids of AR were realized by processing the data and comparing with information described in the literature. RESULTS: In this study, a total of 44 triterpenoids were identified from AR, including three potentially new compounds and 41 known ones, which were classified into six types. CONCLUSION: The newly established approach is suitable for the chemical profiling of the major triterpenoids in AR, which could provide useful information about chemical constituents and a basis for further exploration of its active ingredients in vivo.


Asunto(s)
Medicamentos Herbarios Chinos , Triterpenos , Espectrometría de Masas en Tándem/métodos , Triterpenos/análisis , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Medicamentos Herbarios Chinos/química
13.
J Ethnopharmacol ; 314: 116605, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37178982

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bu-Zhong-Yi-Qi-Tang is a famous traditional Chinese medicine formula that has been prevalent in China for over 700 years to treat spleen-qi deficiency related diseases, such as gastrointestinal and respiratory disorders. However, the bioactive components responsible for regulating spleen-qi deficiency remain unclear and have puzzled many researchers. AIM OF THE STUDY: The current study focuses on efficacy evaluation of regulating spleen-qi deficiency and screening the bioactive components of Bu-Zhong-Yi-Qi-Tang. MATERIALS AND METHODS: The effects of Bu-Zhong-Yi-Qi-Tang were evaluated through blood routine examination, immune organ index, and biochemical analysis. Metabolomics was utilized to analyze the potential endogenous biomarkers (endobiotics) in the plasma, and the prototypes (xenobiotics) of Bu-Zhong-Yi-Qi-Tang in the bio-samples were characterized using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Then, these endobiotics were used as "bait" to predict targets based on network pharmacology and to screen potential bioactive components from the absorbed prototypes in the plasma by constructing an "endobiotics-targets-xenobiotics" association network. Further, the anti-inflammatory activities of representative compounds (calycosin and nobiletin) were validated through poly(I:C)-induced pulmonary inflammation mice model. RESULTS: Bu-Zhong-Yi-Qi-Tang exhibited immunomodulatory and anti-inflammatory activities in spleen-qi deficiency rat, as supported by the observation of increased levels of D-xylose and gastrin in serum, an increase in the thymus index and number of lymphocytes in blood, as well as a reduction in the level of IL-6 in bronchoalveolar lavage fluid. Furthermore, plasma metabolomic analysis revealed a total of 36 Bu-Zhong-Yi-Qi-Tang related endobiotics, which were mainly enriched in primary bile acids biosynthesis, the metabolism of linoleic acid, and the metabolism of phenylalanine pathways. Meanwhile, 95 xenobiotics were characterized in plasma, urine, small intestinal contents, and tissues of spleen-qi deficiency rat after Bu-Zhong-Yi-Qi-Tang treatment. Using an integrated association network, six potential bioactive components of Bu-Zhong-Yi-Qi-Tang were screened. Among them, calycosin was found to significantly reduce the levels of IL-6 and TNF-α in the bronchoalveolar lavage fluid, increase the number of lymphocytes, while nobiletin dramatically decreased the levels of CXCL10, TNF-α, GM-CSF, and IL-6. CONCLUSION: Our study proposed an available strategy for screening bioactive components of BYZQT regulating spleen-qi deficiency based on "endobiotics-targets-xenobiotics" association network.


Asunto(s)
Medicamentos Herbarios Chinos , Bazo , Ratones , Ratas , Animales , Factor de Necrosis Tumoral alfa/farmacología , Interleucina-6 , Xenobióticos/farmacología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Antiinflamatorios/farmacología
14.
J Ethnopharmacol ; 314: 116669, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37217155

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Coronary heart disease (CHD), one of the leading causes of mortality in the world among chronic non-infectious diseases, is closely associated with atherosclerosis, which ultimately leads to myocardial injury. Wendan decoction (WDD), a classical famous formula, exerted an intervention effect on CHD according to numerous reports. However, the effective components and underlying mechanisms for the treatment of CHD have not been fully elucidated. AIM OF THE STUDY: An in-depth investigation of the effective components and mechanisms of WDD for the intervention of CHD was further explored. MATERIALS AND METHODS: Firstly, based on our previous metabolic profile results, a quantification method for absorbed components was established by ultra-performance liquid chromatography triple quadrupole-mass spectrometry (UPLC-TQ-MS) and applied to the pharmacokinetics study of WDD. Then the network pharmacology analysis for considerable exposure components in rat plasma was employed to screen key components of WDD. Gene ontology and KEGG pathway enrichment analysis were further performed to obtain putative action pathways. The effective components and mechanism of WDD were confirmed by in vitro experiments. RESULTS: A rapid and sensitive quantification method was successfully applied to the pharmacokinetic study of 16 high-exposure components of WDD at three different doses. A total of 235 putative CHD targets were obtained for these 16 components. Then, 44 core targets and 10 key components with high degree values were successively screened out by the investigation of protein-protein interaction and the network of "herbal medicine-key components-core targets". Enrichment analysis suggested that the PI3K-Akt signaling pathway was closely related to this formula's therapeutic mechanism. Furthermore, pharmacological experiments demonstrated that 5 of 10 key components (liquiritigenin, narigenin, hesperetin, 3,5,6,7,8,3',4'-heptamethoxyflavone, and isoliquiritigenin) significantly enhanced DOX-induced H9c2 cell viability. The cardioprotective effects of WDD against DOX-induced cell death through the PI3K-Akt signaling pathway were verified by western blot experiments. CONCLUSION: The integration of pharmacokinetics and network pharmacology approaches successfully clarified 5 effective components and therapeutic mechanism of WDD for the intervention of CHD.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Animales , Ratas , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Enfermedad Coronaria/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Simulación del Acoplamiento Molecular
15.
Food Res Int ; 166: 112589, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36914321

RESUMEN

Dried ginger, a well-known medicine and food homologous production, has been widely circulated in China with high health benefits and economic value. Currently, there is still a lack of quality assessment on whether dried ginger in China exhibits chemically and biologically distinct properties, which creates a barrier to its quality control in commercial circulation. In this study, the chemical characteristics of 34 batches of common dried ginger samples in China were first explored using non-targeted chemometrics based on the UPLC-Q/TOF-MS analysis, leading to the identification of 35 chemicals that contributed to clustering into two categories, with sulfonated conjugates being the key chemically distinct components. By comparing the samples before and after sulfur-containing treatment and the further synthesis of a key differentiating component of [6]-gingesulfonic acid, it was then demonstrated that sulfur-containing treatment was the primary cause of the formation of sulfonated conjugates, as opposed to regional or environmental factors. Furthermore, the anti-inflammatory efficacy of dried ginger with high presence of sulfonated conjugates was significantly decreased. Consequently, for the first time, UPLC-QqQ-MS/MS was used to develop a targeted quantification method for 10 characteristic chemicals in dried ginger, allowing researchers to quickly determine whether dried ginger has been processed with sulfur and quantitatively evaluate the quality of dried ginger. These results provided an insight into the quality of commercial dried ginger in China and a suggested method for its quality supervision as well.


Asunto(s)
Zingiber officinale , Zingiber officinale/química , Espectrometría de Masas en Tándem , Antiinflamatorios/farmacología , China , Azufre
16.
Phytomedicine ; 114: 154749, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36931097

RESUMEN

BACKGROUND: Phospholipid peroxidation signaling was recently revealed as a novel pathological mechanism of coronary heart disease (CHD), and small molecules involved in this redox-metabolic pathway are suggested as the potential anti-CHD drugs. Danlou Tablet (DLT), a famous traditional Chinese medicine (TCM) formula characterized by multi-component and multi-target regulation, is widely used in the clinical treatment of CHD by regulating lipid metabolism. However, little information is available addressing the corresponding pharmacological mechanisms and associated active components of DLT. PURPOSE: To study whether phospholipid peroxidation involves a novel mechanism of DLT for the therapeutic effect of CHD and to explain the essential active components. METHODS: Firstly, the HPLC fingerprint was constructed to ensure the controllability of the quality of DLT. Then, a CHD animal model with the characteristics of lipid disorder and myocardial ischemia was established by a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation. The therapeutic effect of DLT was further evaluated based on the results of the rat survival rate, cardiac function, cardiac histopathology, and myocardial ischemia indicators. Correspondingly, whether DLT can regulate the key indicators (ALOX15, GPX4, MDA, GSH, and NADPH) of the phospholipid peroxidation pathway was investigated, and Alox15-/- mice have been applied to confirm the mechanism of DLT. Finally, the target-mediated characterization strategy based on ALOX15, including the integration of in vivo component characterization, network pharmacology, molecular docking analysis, and activity verification, has been further implemented to reveal the key bio-active components in DLT. RESULTS: In this study, a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation was utilized to generate a CHD model, and DLT significantly improved the cardiac dysfunction and reduced the myocardial cell death susceptibility. Further results revealed that DLT reversed the protein expression of ALOX15 and GPX4, the key proteins of phospholipid peroxidation pathways, which subsequently influenced the parameters of phospholipid peroxidation (MDA, GSH, and NADPH). The ALOX15 knockout transgenic animal model confirmed that Alox15-/- mice lost their cardioprotective effects with DLT, suggesting that DLT exerted therapeutic effects on CHD by regulating ALOX15-mediated phospholipid peroxidation. Finally, the target-mediated characterization strategy identified that daidzein is an active component in DLT against CHD by modulating ALOX15. CONCLUSION: Innovatively, ALOX15-mediated phospholipid peroxidation was identified as one of the critical mechanisms of DLT exerting cardioprotective effects. Our findings elucidate a novel mechanism of DLT and provide some new drug evaluation targets and therapeutic strategies for CHD.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Isquemia Miocárdica , Ratas , Ratones , Animales , Medicina Tradicional China , Simulación del Acoplamiento Molecular , NADP/uso terapéutico , Enfermedad Coronaria/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Isquemia Miocárdica/tratamiento farmacológico , Fosfolípidos
17.
Front Nutr ; 10: 996675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819690

RESUMEN

Introduction: Allium macrostemon Bge. (AMB) and Allium chinense G. Don (ACGD) are both edible Allium vegetables and named officinal Xiebai (or Allii Macrostemonis Bulbus) in East Asia. Their medicinal qualities involve in lipid lowering and anti-atherosclerosis effects. And steroidal saponins, nitrogenous compounds and sulfur compounds are like the beneficial components responsible for medicinal functions. Sulfur compounds are the recognized main components both in the volatile oils of AMB and ACGD. Besides, few researches were reported about their holistic chemical profiles of volatile organic compounds (VOCs) and pharmacodynamic effects. Methods: In this study, we first investigated the lipid-lowering and anti-atherosclerotic effects of volatile oils derived from AMB and ACGD in ApoE -/- mice with high fat and high cholesterol diets. Results: The results showed the volatile oils of AMB and ACGD both could markedly reduce serum levels of TG, TC, and LDL-C (p < 0.05), and had no alterations of HDL-C, ALT, and AST levels (p > 0.05). Pathological results displayed they both could obviously improve the morphology of cardiomyocytes and the degree of myocardial fibrosis in model mice. Meanwhile, oil red O staining results also proved they could apparently decrease the lesion areas of plaques in the aortic intima (p < 0.05). Furthermore, head space solid phase microextraction coupled with gas chromatography tandem mass spectrometry combined with metabolomics analysis was performed to characterize the VOCs profiles of AMB and ACGD, and screen their differential VOCs. A total of 121 and 115 VOCs were identified or tentatively characterized in the volatile oils of AMB and ACGD, respectively. Relative-quantification results also confirmed sulfur compounds, aldehydes, and heterocyclic compounds accounted for about 85.6% in AMB bulbs, while approximately 86.6% in ACGD bulbs were attributed to sulfur compounds, ketones, and heterocyclic compounds. Multivariate statistical analysis showed 62 differentially expressed VOCs were observed between AMB and ACGD, of which 17 sulfur compounds were found to be closely associated with the garlic flavor and efficacy. Discussion: Taken together, this study was the first analysis of holistic chemical profiles and anti-atherosclerosis effects of AMB and ACGD volatile oils, and would benefit the understanding of effective components in AMB and ACGD.

18.
RSC Adv ; 13(9): 5804-5812, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36816071

RESUMEN

Gingerols, mainly [6]-gingerol (6G), [8]-gingerol (8G), and [10]-gingerol (10G), are the functional and specific pungent phytochemicals in ginger. However, poor oral bioavailability limits their applications owing to extensive metabolism. The present study aims to characterize the cytochrome P450 (CYP) metabolic characteristics of 6G, 8G, and 10G by using pooled human liver microsomes (HLM), different animal liver microsomes, and the expressed CYP enzymes. It is shown that NADPH-dependent oxidation and hydrogenation metabolisms of gingerols are the main metabolic types in HLM. With the increase of the carbon chain, the polarity of gingerols decreases and the formation of hydrogenated metabolites is more efficient (CLint: 1.41 µL min-1 mg-1 for 6G, 7.79 µL min-1 mg-1 for 8G and 14.11 µL min-1 mg-1 for 10G), indicating that the phase I metabolism of gingerols by HLM varied with the chemical structure of the substrate. The phase I metabolism of gingerols revealed considerable species variations, and compared to HLM, novel metabolites such as (3S,5S)-gingerdiols and demethylated metabolites are generated in some animal liver microsomes. The primary enzymes involved in the oxidized and demethylated metabolism of these gingerols are CYP1A2 and CYP2C19, but their affinities for gingerols are not the same. CYP2D6 and CYP2B6 contributed significantly to the formation of (3R,5S)-[8]-gingerdiol and (3R,5S)-[10]-gingerdiol, respectively; however, the enzyme responsible for the production of (3R,5S)-[6]-gingerediol is yet to be identified. Some metabolites in microsomes cannot be detected by the 12 investigated CYP enzymes, which may be related to the combined effects of multiple enzymes in microsomes, the different affinity of mixed liver microsomes and CYP enzymes, gene polymorphisms, etc. Overall, this work provides a deeper knowledge of the influence of CYP metabolism on the gingerols, as well as the mode of action and the possibility for drug-herbal interactions.

19.
Peptides ; 161: 170948, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36646385

RESUMEN

Novel glucagon receptor (GCGR) and glucagon-like peptide 1 receptor (GLP-1R) dual agonists are reported to have improved efficacy over GLP-1R mono-agonists in treating type 2 diabetes (T2DM) and obesity. Here, we describe the discovery of a novel oxyntomodulin (OXM) based GLP-1R/GCGR dual agonist with potent and balanced potency toward GLP-1R and GCGR. The lead peptide OXM-7 was obtained via stepwise rational design and long-acting modification. In ICR and db/db mice, OXM-7 exhibited prominent acute and long-acting hypoglycemic effects. In diet-induced obesity (DIO) mice, twice-daily administration of OXM-7 produced significant weight loss, normalized lipid metabolism, and improved glucose control. In DIO-nonalcoholic steatohepatitis (NASH) mice, OXM-7 treatment significantly reversed hepatic steatosis, and reduced serum and hepatic lipid levels. These preclinical data suggest the therapeutic potential of OXM-7 as a novel anti-diabetic, anti-steatotic and/or anti-obesity agent.


Asunto(s)
Diabetes Mellitus Tipo 2 , Oxintomodulina , Ratones , Animales , Oxintomodulina/farmacología , Oxintomodulina/uso terapéutico , Receptores de Glucagón/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratones Endogámicos ICR , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Péptido 1 Similar al Glucagón/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/metabolismo
20.
J Sep Sci ; 46(1): e2200456, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36300722

RESUMEN

Wendan decoction, a well-known classical traditional Chinese medicine prescription, has been widely used in the clinical application of coronary heart disease for thousands of years. However, due to a lack of research on the overall metabolism of Wendan decoction, the bioavailable components responsible for the therapeutic effects remain unclear, hindering the revelation of its mechanisms against coronary heart disease. Consequently, an efficient joint research pattern combined with characterization of the metabolic profile and network pharmacology analysis was proposed. As a result, a total of 172 Wendan decoction-related xenobiotics (57 prototypes and 115 metabolites) were detected based on the exploration of the typical metabolic pathways of representative pure compounds in vivo, describing their multi-component metabolic characteristics comprehensively. Subsequently, an integrated network of "herbs-bioavailable compounds-coronary heart disease targets-pathways-therapeutic effects" was constructed, and its seven compounds were finally screened out as the key components acting on five main targets of coronary heart disease. Overall, this work not only provided a crucial biological foundation for interpreting the effective components and action mechanisms of Wendan decoction on coronary heart disease but also showed a reference value for revealing the bioactive components of traditional Chinese medicine prescriptions.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Humanos , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Espectrometría de Masas , Metaboloma , Enfermedad Coronaria/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...