Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 53(13): 2091-100, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24625295

RESUMEN

In eukaryotes, different chromatin states facilitate or repress gene expression and restrict the activity of transposable elements. Post-translational modifications (PTMs) of amino acid residues on the N-terminal tails of histones are suggested to define such states. The histone lysine methyltransferase (HKMTase) SU(VAR)3-9 RELATED4 (SUVR4) of Arabidopsis thaliana functions as a repressor of transposon activity. Binding of ubiquitin by the WIYLD domain facilitates the addition of two methyl groups to monomethylated lysine 9 of histone H3. By using nuclear magnetic resonance (NMR) spectroscopy, we identified SUVR4 WIYLD (S4WIYLD) as a domain with a four-helix bundle structure, in contrast to three-helix bundles of other ubiquitin binding domains. NMR titration analyses showed that residues of helix α1 (Q38, L39, and D40) and helix α4 (N68, T70, A71, V73, D74, I76, S78, and E82) of S4WIYLD and residues between the first and second ß-strands (T9 and G10) and on ß-strands 3 (R42, G47, K48, and Q49) and 4 (H68, R72, and L73) undergo significant chemical shift changes when the two proteins interact. A model of the complex, generated using HADDOCK, suggests that the N-terminal and C-terminal parts of S4WIYLD constitute a surface that interacts with charged residues close to the hydrophobic patch of ubiquitin. The WIYLD domains of the closely related SUVR1 and SUVR2 Arabidopsis proteins also bind ubiquitin, indicating that this is a general feature of this domain. The question of whether SUVR proteins act as both readers of monoubiquitinated H2B and writers of histone PTMs is discussed.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Ensayo de Inmunoadsorción Enzimática , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Secundaria de Proteína , Alineación de Secuencia , Ubiquitina/química
2.
J Biol Chem ; 288(34): 24452-64, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23861403

RESUMEN

In acute and chronic neurodegeneration, Ca(2+) mishandling and disruption of the cytoskeleton compromise neuronal integrity, yet abnormalities in the signaling roles of cytoskeletal proteins remain largely unexplored. We now report that the microtubule-associated protein p600 (also known as UBR4) promotes neuronal survival. Following depletion of p600, glutamate-induced Ca(2+) influx through NMDA receptors, but not AMPA receptors, initiates a degenerative process characterized by endoplasmic reticulum fragmentation and endoplasmic reticulum Ca(2+) release via inositol 1,4,5-trisphosphate receptors. Downstream of NMDA receptors, p600 associates with the calmodulin·calmodulin-dependent protein kinase IIα complex. A direct and atypical p600/calmodulin interaction is required for neuronal survival. Thus, p600 counteracts specific Ca(2+)-induced death pathways through regulation of Ca(2+) homeostasis and signaling.


Asunto(s)
Calcio/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas de Unión a Calmodulina/genética , Supervivencia Celular/fisiología , Células Cultivadas , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Ratas , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
3.
PLoS Genet ; 7(3): e1001325, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21423664

RESUMEN

Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation-dependent and -independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatina/metabolismo , Elementos Transponibles de ADN/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Recombinantes/metabolismo , Ubiquitina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endopeptidasas/metabolismo , Regulación de la Expresión Génica de las Plantas , N-Metiltransferasa de Histona-Lisina/genética , Metilación , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Especificidad por Sustrato , Transcripción Genética , Técnicas del Sistema de Dos Híbridos , Proteasas Ubiquitina-Específicas , Ubiquitinación
4.
Biochemistry ; 50(12): 1966-80, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21288002

RESUMEN

Histone methylation recognition is accomplished by a number of evolutionarily conserved protein domains, including those belonging to the methylated lysine-binding Royal family of structural folds. One well-known member of the Royal family, the chromodomain, is found in the HP1/chromobox and CHD subfamilies of proteins, in addition to a small number of other proteins that are involved in chromatin remodeling and gene transcriptional silencing. Here we discuss the structure and function of the chromodomain within these proteins as methylated histone lysine binders and how the functions of these chromodomains can be modulated by additional post-translational modifications or binding to nucleic acids.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Lisina/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina , Humanos , Metilación , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
5.
Crit Rev Biochem Mol Biol ; 45(6): 488-505, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20923397

RESUMEN

Epigenetic regulation of gene transcription relies on an array of recurring structural domains that have evolved to recognize post-translational modifications on histones. The roles of bromodomains, PHD fingers, and the Royal family domains in the recognition of histone modifications to direct transcription have been well characterized. However, only through recent structural studies has it been realized that these basic folds are capable of interacting with increasingly more complex histone modification landscapes, illuminating how nature has concocted a way to accomplish more with less. Here we review the recent biochemical and structural studies of several conserved folds that recognize modified as well as unmodified histone sequences, and discuss their implications on gene expression.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Histonas/química , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/metabolismo , Acetilación , Animales , Proteínas de Unión al ADN/química , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/genética , Humanos , Metilación , Fosforilación , Pliegue de Proteína , Proteínas de Unión al ARN/química , Elementos Reguladores de la Transcripción , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transcripción Genética
6.
Mol Cell ; 38(5): 662-74, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20541999

RESUMEN

Expression of the INK4b/ARF/INK4a tumor suppressor locus in normal and cancerous cell growth is controlled by methylation of histone H3 at lysine 27 (H3K27me) as directed by the Polycomb group proteins. The antisense noncoding RNA ANRIL of the INK4b/ARF/INK4a locus is also important for expression of the protein-coding genes in cis, but its mechanism has remained elusive. Here we report that chromobox 7 (CBX7) within the polycomb repressive complex 1 binds to ANRIL, and both CBX7 and ANRIL are found at elevated levels in prostate cancer tissues. In concert with H3K27me recognition, binding to RNA contributes to CBX7 function, and disruption of either interaction impacts the ability of CBX7 to repress the INK4b/ARF/INK4a locus and control senescence. Structure-guided analysis reveals the molecular interplay between noncoding RNA and H3K27me as mediated by the conserved chromodomain. Our study suggests a mechanism by which noncoding RNA participates directly in epigenetic transcriptional repression.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Silenciador del Gen , Histonas , Lisina/metabolismo , ARN no Traducido/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular Tumoral , Senescencia Celular/fisiología , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Resonancia Magnética Nuclear Biomolecular , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Estructura Terciaria de Proteína , ARN no Traducido/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Transcripción Genética
7.
Nat Struct Mol Biol ; 15(6): 626-33, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18488044

RESUMEN

The tandem PHD finger-bromodomain, found in many chromatin-associated proteins, has an important role in gene silencing by the human co-repressor KRAB-associated protein 1 (KAP1). Here we report the three-dimensional solution structure of the tandem PHD finger-bromodomain of KAP1. The structure reveals a distinct scaffold unifying the two protein modules, in which the first helix, alpha(Z), of an atypical bromodomain forms the central hydrophobic core that anchors the other three helices of the bromodomain on one side and the zinc binding PHD finger on the other. A comprehensive mutation-based structure-function analysis correlating transcriptional repression, ubiquitin-conjugating enzyme 9 (UBC9) binding and SUMOylation shows that the PHD finger and the bromodomain of KAP1 cooperate as one functional unit to facilitate lysine SUMOylation, which is required for KAP1 co-repressor activity in gene silencing. These results demonstrate a previously unknown unified function for the tandem PHD finger-bromodomain as an intramolecular small ubiquitin-like modifier (SUMO) E3 ligase for transcriptional silencing.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Silenciador del Gen , Proteínas Represoras/química , Proteínas Represoras/fisiología , Regulación hacia Abajo , Humanos , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Soluciones , Transcripción Genética , Proteína 28 que Contiene Motivos Tripartito , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas , Dedos de Zinc
8.
Mol Cell ; 28(5): 823-37, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-18082607

RESUMEN

Tandem PHD and bromodomains are often found in chromatin-associated proteins and have been shown to cooperate in gene silencing. Each domain can bind specifically modified histones: the mechanisms of cooperation between these domains are unknown. We show that the PHD domain of the KAP1 corepressor functions as an intramolecular E3 ligase for sumoylation of the adjacent bromodomain. The RING finger-like structure of the PHD domain is required for both Ubc9 binding and sumoylation and directs modification to specific lysine residues in the bromodomain. Sumoylation is required for KAP1-mediated gene silencing and functions by directly recruiting the SETDB1 histone methyltransferase and the CHD3/Mi2 component of the NuRD complex via SUMO-interacting motifs. Sumoylated KAP1 stimulates the histone methyltransferase activity of SETDB1. These data provide a mechanistic explanation for the cooperation of PHD and bromodomains in gene regulation and describe a function of the PHD domain as an intramolecular E3 SUMO ligase.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Silenciador del Gen , Dominios RING Finger , Proteínas Represoras/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Células Cultivadas , Cromatina/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina , Humanos , Riñón/metabolismo , Lisina/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Proteína 28 que Contiene Motivos Tripartito , Técnicas del Sistema de Dos Híbridos , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética
9.
Mol Cell ; 27(4): 596-608, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17707231

RESUMEN

Epigenetic gene silencing in eukaryotes is regulated in part by lysine methylation of the core histone proteins. While histone lysine methylation is known to control gene expression through the recruitment of modification-specific effector proteins, it remains unknown whether nonhistone chromatin proteins are targets for similar modification-recognition systems. Here we show that the histone H3 methyltransferase G9a contains a conserved methylation motif with marked sequence similarity to H3 itself. As with methylation of H3 lysine 9, autocatalytic G9a methylation is necessary and sufficient to mediate in vivo interaction with the epigenetic regulator heterochromatin protein 1 (HP1), and this methyl-dependent interaction can be reversed by adjacent G9a phosphorylation. NMR analysis indicates that the HP1 chromodomain recognizes methyl-G9a through a binding mode similar to that used in recognition of methyl-H3K9, demonstrating that the chromodomain functions as a generalized methyl-lysine binding module. These data reveal histone-like modification cassettes - or "histone mimics" - as a distinct class of nonhistone methylation targets and directly extend the principles of the histone code to the regulation of nonhistone proteins.


Asunto(s)
Metilación de ADN , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Imitación Molecular , Complejos Multiproteicos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/química , Humanos , Lisina/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Proteína Metiltransferasas
10.
Results Probl Cell Differ ; 41: 1-23, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16909888

RESUMEN

Chromatin-mediated gene transcription or silencing is a dynamic process in which binding of various proteins or protein complexes can displace nucleosomal histones from DNA to relieve repression or drive the gene into a highly repressed, silent state. Covalent modifications to DNA and histones associated with chromatin structural change play a crucial role in transcriptional regulation, with particular modifications on certain residues associated with a specific transcriptional outcome. In recent years a number of structural domains have been identified within chromatin-associated proteins, including DNA or RNA binding domains, protein-protein interaction domains and domains that recognize specific covalent modifications to histone tails. In this review we discuss the structural features of these protein modules and the functional roles they play in chromatin biology.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Acetilación , Animales , Histonas/química , Histonas/metabolismo , Humanos , Metilación , Unión Proteica
11.
Biochem Biophys Res Commun ; 343(2): 520-4, 2006 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-16546129

RESUMEN

Calexcitin (CE) is a Ca2+-binding protein which is expressed in neuronal cells and is a member of the sarcoplasmic Ca2+-binding protein subfamily. The peptide backbone of Ca2+-CE has been assigned by NMR and it shows that CE is composed of nine alpha-helices-forming four EF-hands and an additional helix near the C-terminus. A structural model of CE suggests the presence of a putative recessed hydrophobic pocket that may be involved in Ca2+-mediated protein-ligand interactions. This feature is unique to CE and is absent in other SCPs, such as those from Branchiostoma and Nereis, and from calerythrin.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Unión al Calcio/química , Calcio/química , Proteínas de Unión al GTP/química , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Modelos Moleculares , Sitios de Unión , Proteínas de Caenorhabditis elegans/análisis , Calcio/análisis , Proteínas de Unión al Calcio/análisis , Simulación por Computador , Proteínas de Unión al GTP/análisis , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
12.
Bioessays ; 26(5): 497-511, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15112230

RESUMEN

Cadherins are a large family of single-pass transmembrane proteins principally involved in Ca2+-dependent homotypic cell adhesion. The cadherin molecules comprise three domains, the intracellular domain, the transmembrane domain and the extracellular domain, and form large complexes with a vast array of binding partners (including cadherin molecules of the same type in homophilic interactions and cellular protein catenins), orchestrating biologically essential extracellular and intracellular signalling processes. While current, contrasting models for classic cadherin homophilic interaction involve varying numbers of specific repeats found in the extracellular domain, the structure of the domain itself clearly remains the main determinant of cell stability and binding specificity. Through intracellular interactions, cadherin enhances its adhesive properties binding the cytoskeleton via cytoplasmic associated factors alpha- catenin, beta-catenin and p120ctn. Recent structural studies on classic cadherins and these catenin molecules have provided new insight into the essential mechanisms underlying cadherin-mediated cell interaction and catenin-mediated cellular signalling. Remarkable structural diversity has been observed in beta-catenin recognition of other cellular factors including APC, Tcf and ICAT, proteins that contribute to or compete with cadherin/catenin functioning.


Asunto(s)
Cadherinas/metabolismo , Adhesión Celular , Proteínas del Citoesqueleto/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Cadherinas/química , Cadherinas/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Sustancias Macromoleculares , Modelos Moleculares , Familia de Multigenes , Conformación Proteica , Factores de Transcripción/metabolismo , alfa Catenina , beta Catenina
13.
J Mol Biol ; 328(1): 193-204, 2003 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-12684008

RESUMEN

Activation of glutamate decarboxylase (GAD) by calcium-bound calmodulin (CaM) is required for normal plant growth through regulation of gamma-aminobutyrate and glutamate metabolism. The interaction of CaM with the C-terminal domain of GAD is believed to induce dimerization of the enzyme, an event implicated for Ca(2+)-dependent enzyme activation. Here, we present the solution structure of CaM in complex with a dimer of peptides derived from the C-terminus of Petunia hybrida GAD. The 23 kDa ternary complex is pseudo-symmetrical with each domain of CaM bound to one of the two antiparallel GAD peptides, which form an X-shape with an interhelical angle of 60 degrees. To accommodate the dimeric helical GAD target, the two domains of CaM adopt an orientation markedly different from that seen in other CaM-target complexes. Although the dimeric GAD domain is much larger than previously studied CaM-binding peptides, the two CaM domains appear closer together and make a number of interdomain contacts not observed in earlier complexes. The present structure of a single CaM molecule interacting with two target peptides provides new evidence for the conformational flexibility of CaM as well as a structural basis for the ability of CaM to activate two enzyme molecules simultaneously.


Asunto(s)
Calmodulina/metabolismo , Glutamato Descarboxilasa/química , Glutamato Descarboxilasa/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Calmodulina/química , Dimerización , Imagenología Tridimensional , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Petunia/enzimología , Conformación Proteica , Estructura Terciaria de Proteína
14.
Biochemistry ; 41(43): 12899-906, 2002 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-12390014

RESUMEN

Calmodulin-regulated serine/threonine kinases (CaM kinases) play crucial roles in Ca2+-dependent signaling transduction pathways in eukaryotes. Despite having a similar overall molecular architecture of catalytic and regulatory domains, CaM kinases employ different binding modes for Ca2+/CaM recruitment which is required for their activation. Here we present a residual dipolar coupling (RDC)-based NMR approach to characterizing the molecular recognition of CaM with five different CaM kinases. Our analyses indicate that CaM kinase I and likely IV use the same CaM binding mode as myosin light chain kinase (1-14 motif), distinct from those of CaM kinase II (1-10 motif) and CaM kinase kinase (1-16- motif). This NMR approach provides an efficient experimental guide for homology modeling and structural characterization of CaM-target complexes.


Asunto(s)
Calmodulina/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas Quinasas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/química , Datos de Secuencia Molecular , Quinasa de Cadena Ligera de Miosina/química , Isótopos de Nitrógeno , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Protones , Soluciones , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...