Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(1): e1011968, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38252661

RESUMEN

Macrolides, lincosamides, and streptogramin B (MLS) are structurally distinct molecules that are among the safest antibiotics for prophylactic use and for the treatment of bacterial infections. The family of erythromycin resistance methyltransferases (Erm) invariantly install either one or two methyl groups onto the N6,6-adenosine of 2058 nucleotide (m6A2058) of the bacterial 23S rRNA, leading to bacterial cross-resistance to all MLS antibiotics. Despite extensive structural studies on the mechanism of Erm-mediated MLS resistance, how the m6A epitranscriptomic mark affects ribosome function and bacterial physiology is not well understood. Here, we show that Staphylococcus aureus cells harboring m6A2058 ribosomes are outcompeted by cells carrying unmodified ribosomes during infections and are severely impaired in colonization in the absence of an unmodified counterpart. The competitive advantage of m6A2058 ribosomes is manifested only upon antibiotic challenge. Using ribosome profiling (Ribo-Seq) and a dual-fluorescence reporter to measure ribosome occupancy and translational fidelity, we found that specific genes involved in host interactions, metabolism, and information processing are disproportionally deregulated in mRNA translation. This dysregulation is linked to a substantial reduction in translational capacity and fidelity in m6A2058 ribosomes. These findings point to a general "inefficient translation" mechanism of trade-offs associated with multidrug-resistant ribosomes.


Asunto(s)
Adenina/análogos & derivados , Antibacterianos , Staphylococcus aureus , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Lincosamidas , Eritromicina/metabolismo , Macrólidos , Pruebas de Sensibilidad Microbiana
2.
Proc Natl Acad Sci U S A ; 119(39): e2207257119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122228

RESUMEN

Bacterial hibernating 100S ribosomes (the 70S dimers) are excluded from translation and are protected from ribonucleolytic degradation, thereby promoting long-term viability and increased regrowth. No extraribosomal target of any hibernation factor has been reported. Here, we discovered a previously unrecognized binding partner (YwlG) of hibernation-promoting factor (HPF) in the human pathogen Staphylococcus aureus. YwlG is an uncharacterized virulence factor in S. aureus. We show that the HPF-YwlG interaction is direct, independent of ribosome binding, and functionally linked to cold adaptation and glucose metabolism. Consistent with the distant resemblance of YwlG to the hexameric structures of nicotinamide adenine dinucleotide (NAD)-specific glutamate dehydrogenases (GDHs), YwlG overexpression can compensate for a loss of cellular GDH activity. The reduced abundance of 100S complexes and the suppression of YwlG-dependent GDH activity provide evidence for a two-way sequestration between YwlG and HPF. These findings reveal an unexpected layer of regulation linking the biogenesis of 100S ribosomes to glutamate metabolism.


Asunto(s)
Hibernación , Proteínas Ribosómicas , Bacterias/metabolismo , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Humanos , NAD/metabolismo , Oxidorreductasas/metabolismo , Proteínas Ribosómicas/metabolismo , Staphylococcus aureus/metabolismo , Factores de Virulencia/metabolismo
3.
Mol Cell ; 82(17): 3284-3298.e7, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35772404

RESUMEN

Bicarbonate (HCO3-) ions maintain pH homeostasis in eukaryotic cells and serve as a carbonyl donor to support cellular metabolism. However, whether the abundance of HCO3- is regulated or harnessed to promote cell growth is unknown. The mechanistic target of rapamycin complex 1 (mTORC1) adjusts cellular metabolism to support biomass production and cell growth. We find that mTORC1 stimulates the intracellular transport of HCO3- to promote nucleotide synthesis through the selective translational regulation of the sodium bicarbonate cotransporter SLC4A7. Downstream of mTORC1, SLC4A7 mRNA translation required the S6K-dependent phosphorylation of the translation factor eIF4B. In mTORC1-driven cells, loss of SLC4A7 resulted in reduced cell and tumor growth and decreased flux through de novo purine and pyrimidine synthesis in human cells and tumors without altering the intracellular pH. Thus, mTORC1 signaling, through the control of SLC4A7 expression, harnesses environmental bicarbonate to promote anabolic metabolism, cell biomass, and growth.


Asunto(s)
Bicarbonatos , Diana Mecanicista del Complejo 1 de la Rapamicina , Nucleótidos , Simportadores de Sodio-Bicarbonato , Bicarbonatos/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nucleótidos/biosíntesis , Fosforilación , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo
4.
Microbiol Spectr ; 10(2): e0226121, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35311583

RESUMEN

Mutational changes in bacterial ribosomes often affect gene expression and consequently cellular fitness. Understanding how mutant ribosomes disrupt global gene expression is critical to determining key genetic factors that affect bacterial survival. Here, we describe gene expression and phenotypic changes presented in Escherichia coli cells carrying an uL22(K90D) mutant ribosomal protein, which displayed alterations during growth. Ribosome profiling analyses revealed reduced expression of operons involved in catabolism, indole production, and lysine-dependent acid resistance. In general, translation initiation of proximal genes in several of these affected operons was substantially reduced. These reductions in expression were accompanied by increases in the expression of acid-induced membrane proteins and chaperones, the glutamate-decarboxylase regulon, and the autoinducer-2 metabolic regulon. In agreement with these changes, uL22(K90D) mutant cells had higher glutamate decarboxylase activity, survived better in extremely acidic conditions, and generated more biofilm in static cultures compared to their parental strain. Our work demonstrates that a single mutation in a non-conserved residue of a ribosomal protein affects a substantial number of genes to alter pH resistance and the formation of biofilms. IMPORTANCE All newly synthesized proteins must pass through a channel in the ribosome named the exit tunnel before emerging into the cytoplasm, membrane, and other compartments. The structural characteristics of the tunnel could govern protein folding and gene expression in a species-specific manner but how the identity of tunnel elements influences gene expression is less well-understood. Our global transcriptomics and translatome profiling demonstrate that a single substitution in a non-conserved amino acid of the E. coli tunnel protein uL22 has a profound impact on catabolism, cellular signaling, and acid resistance systems. Consequently, cells bearing the uL22 mutant ribosomes had an increased ability to survive acidic conditions and form biofilms. This work reveals a previously unrecognized link between tunnel identity and bacterial stress adaptation involving pH response and biofilm formation.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Constricción , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo
5.
mBio ; 12(4): e0033421, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34253058

RESUMEN

Bacterial and eukaryotic hibernation factors prevent translation by physically blocking the decoding center of ribosomes, a phenomenon called ribosome hibernation that often occurs in response to nutrient deprivation. The human pathogen Staphylococcus aureus lacking the sole hibernation factor HPF undergoes massive ribosome degradation via an unknown pathway. Using genetic and biochemical approaches, we find that inactivating the 3'-to-5' exonuclease RNase R suppresses ribosome degradation in the Δhpf mutant. In vitro cell-free degradation assays confirm that 30S and 70S ribosomes isolated from the Δhpf mutant are extremely susceptible to RNase R, in stark contrast to nucleolytic resistance of the HPF-bound 70S and 100S complexes isolated from the wild type. In the absence of HPF, specific S. aureus 16S rRNA helices are sensitive to nucleolytic cleavage. These RNase hot spots are distinct from that found in the Escherichia coli ribosomes. S. aureus RNase R is associated with ribosomes, but unlike the E. coli counterpart, it is not regulated by general stressors and acetylation. The results not only highlight key differences between the evolutionarily conserved RNase R homologs but also provide direct evidence that HPF preserves ribosome integrity beyond its role in translational avoidance, thereby poising the hibernating ribosomes for rapid resumption of translation. IMPORTANCE Ribosome hibernation is pivotal for the rapid recovery of translation after quiescence in both bacteria and eukaryotes. Ribosome hibernation factors sterically occlude the entry of mRNA and tRNA and are thought to primarily maintain ribosomes in a translation-repressive state, thereby providing a pool of readily recyclable 70S or 80S complexes upon dissociation of the hibernation factors. Ribosomes in Staphylococcus aureus cells lacking the sole hibernation factor HPF are extremely unstable. Here, we show that HPF binding inhibits ribosome degradation by the evolutionarily conserved exoribonuclease RNase R. The data not only uncover a direct protective role of HPF in ribosome stability but also reinforce the versatility of RNase R in RNA processing, decay, and ribosome quality control.


Asunto(s)
Proteínas Bacterianas/genética , Exorribonucleasas/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Exorribonucleasas/antagonistas & inhibidores , Exorribonucleasas/genética , Eliminación de Gen
6.
J Biol Chem ; 295(18): 6053-6063, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32209660

RESUMEN

The formation of translationally inactive 70S dimers (called 100S ribosomes) by hibernation-promoting factor is a widespread survival strategy among bacteria. Ribosome dimerization is thought to be reversible, with the dissociation of the 100S complexes enabling ribosome recycling for participation in new rounds of translation. The precise pathway of 100S ribosome recycling has been unclear. We previously found that the heat-shock GTPase HflX in the human pathogen Staphylococcus aureus is a minor disassembly factor. Cells lacking hflX do not accumulate 100S ribosomes unless they are subjected to heat exposure, suggesting the existence of an alternative pathway during nonstressed conditions. Here, we provide biochemical and genetic evidence that two essential translation factors, ribosome-recycling factor (RRF) and GTPase elongation factor G (EF-G), synergistically split 100S ribosomes in a GTP-dependent but tRNA translocation-independent manner. We found that although HflX and the RRF/EF-G pair are functionally interchangeable, HflX is expressed at low levels and is dispensable under normal growth conditions. The bacterial RRF/EF-G pair was previously known to target only the post-termination 70S complexes; our results reveal a new role in the reversal of ribosome hibernation that is intimately linked to bacterial pathogenesis, persister formation, stress responses, and ribosome integrity.


Asunto(s)
Factor G de Elongación Peptídica/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Staphylococcus aureus/citología , Staphylococcus aureus/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformación Proteica , Proteínas Ribosómicas/química
7.
FEBS J ; 286(18): 3558-3565, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31230411

RESUMEN

Protein synthesis is one of the most energy demanding cellular processes. The ability to regulate protein synthesis is essential for cells under normal as well as stress conditions, such as nutrient deficiencies. One mechanism for protein synthesis suppression is the dimerization of ribosomes into hibernation complexes. In most cells, this process is promoted by the hibernating promoting factor (HPF) and in a small group of Gram-negative bacteria (γ-proteobacteria), the dimer formation is induced by a shorter version of HPF (HPFshort ) and by an additional protein, the ribosome modulation factor. In most bacteria, the product of this process is the 100S ribosome complex. Recent advances in cryogenic electron microscopy methods resulted in an abundance of detailed structures of near atomic resolutions 100S complexes that allow for a better understanding of the dimerization process and the way it inhibits protein synthesis. As ribosomal dimerization is vital for cell survival, this process is an attractive target for the development of novel antimicrobial substances that might inhibit or stabilize the complex formation. As different dimerization processes exist among bacteria, including pathogens, this process may provide the basis for species-specific design of antimicrobial agents. Here, we review in detail the various dimerization mechanisms and discuss how they affect the overall dimer structures of the bacterial ribosomes.


Asunto(s)
Dimerización , Proteínas de Escherichia coli/ultraestructura , Gammaproteobacteria/ultraestructura , Hibernación/genética , Proteínas Ribosómicas/ultraestructura , Ribosomas/ultraestructura , Supervivencia Celular/genética , Microscopía por Crioelectrón , Metabolismo Energético/genética , Proteínas de Escherichia coli/genética , Gammaproteobacteria/genética , Unión Proteica/genética , Biosíntesis de Proteínas/genética , Conformación Proteica , Proteínas Ribosómicas/genética , Ribosomas/genética
8.
Curr Genet ; 64(4): 753-760, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29243175

RESUMEN

In response to nutrient deprivation and environmental insults, bacteria conjoin two copies of non-translating 70S ribosomes that form the translationally inactive 100S dimer. This widespread phenomenon is believed to prevent ribosome turnover and serves as a reservoir that, when conditions become favorable, allows the hibernating ribosomes to be disassembled and recycled for translation. New structural studies have revealed two distinct mechanisms for dimerizing 70S ribosomes, but the molecular basis of the disassembly process is still in its infancy. Many details regarding the sequence of dimerization-dissociation events with respect to the binding and departure of the hibernation factor and its antagonizing disassembly factor remain unclear.


Asunto(s)
Bacterias/genética , Proteínas Ribosómicas/genética , Estrés Fisiológico/genética , Proteínas Bacterianas , Dimerización , Biosíntesis de Proteínas/genética
9.
Nat Commun ; 8(1): 723, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28959035

RESUMEN

Formation of 100S ribosome dimer is generally associated with translation suppression in bacteria. Trans-acting factors ribosome modulation factor (RMF) and hibernating promoting factor (HPF) were shown to directly mediate this process in E. coli. Gram-positive S. aureus lacks an RMF homolog and the structural basis for its 100S formation was not known. Here we report the cryo-electron microscopy structure of the native 100S ribosome from S. aureus, revealing the molecular mechanism of its formation. The structure is distinct from previously reported analogs and relies on the HPF C-terminal extension forming the binding platform for the interactions between both of the small ribosomal subunits. The 100S dimer is formed through interactions between rRNA h26, h40, and protein uS2, involving conformational changes of the head as well as surface regions that could potentially prevent RNA polymerase from docking to the ribosome.Under conditions of nutrient limitation, bacterial ribosomes undergo dimerization, forming a 100S complex that is translationally inactive. Here the authors present the structural basis for formation of the 100S complexes in Gram-positive bacteria, shedding light on the mechanism of translation suppression by the ribosome-silencing factors.


Asunto(s)
Ribosomas/química , Ribosomas/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Dimerización , Unión Proteica , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestructura
10.
Proc Natl Acad Sci U S A ; 114(39): E8165-E8173, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28894000

RESUMEN

The bacterial hibernating 100S ribosome is a poorly understood form of the dimeric 70S particle that has been linked to pathogenesis, translational repression, starvation responses, and ribosome turnover. In the opportunistic pathogen Staphylococcus aureus and most other bacteria, hibernation-promoting factor (HPF) homodimerizes the 70S ribosomes to form a translationally silent 100S complex. Conversely, the 100S ribosomes dissociate into subunits and are presumably recycled for new rounds of translation. The regulation and disassembly of the 100S ribosome are largely unknown because the temporal abundance of the 100S ribosome varies considerably among different bacterial phyla. Here, we identify a universally conserved GTPase (HflX) as a bona fide dissociation factor of the S. aureus 100S ribosome. The expression levels hpf and hflX are coregulated by general stress and stringent responses in a temperature-dependent manner. While all tested guanosine analogs stimulate the splitting activity of HflX on the 70S ribosome, only GTP can completely dissociate the 100S ribosome. Our results reveal the antagonistic relationship of HPF and HflX and uncover the key regulators of 70S and 100S ribosome homeostasis that are intimately associated with bacterial survival.


Asunto(s)
Proteínas Bacterianas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Multimerización de Proteína/fisiología , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Staphylococcus aureus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Proteínas Ribosómicas/genética , Alineación de Secuencia , Factor sigma/genética , Staphylococcus aureus/genética
11.
Nucleic Acids Res ; 44(10): 4881-93, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27001516

RESUMEN

In opportunistic Gram-positive Staphylococcus aureus, a small protein called hibernation-promoting factor (HPFSa) is sufficient to dimerize 2.5-MDa 70S ribosomes into a translationally inactive 100S complex. Although the 100S dimer is observed in only the stationary phase in Gram-negative gammaproteobacteria, it is ubiquitous throughout all growth phases in S. aureus The biological significance of the 100S ribosome is poorly understood. Here, we reveal an important role of HPFSa in preserving ribosome integrity and poising cells for translational restart, a process that has significant clinical implications for relapsed staphylococcal infections. We found that the hpf null strain is severely impaired in long-term viability concomitant with a dramatic loss of intact ribosomes. Genome-wide ribosome profiling shows that eliminating HPFSa drastically increased ribosome occupancy at the 5' end of specific mRNAs under nutrient-limited conditions, suggesting that HPFSa may suppress translation initiation. The protective function of HPFSa on ribosomes resides at the N-terminal conserved basic residues and the extended C-terminal segment, which are critical for dimerization and ribosome binding, respectively. These data provide significant insight into the functional consequences of 100S ribosome loss for protein synthesis and stress adaptation.


Asunto(s)
Proteínas Bacterianas/fisiología , Biosíntesis de Proteínas , Proteínas Ribosómicas/fisiología , Ribosomas/metabolismo , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Codón Iniciador , Dimerización , Viabilidad Microbiana , Mutagénesis , Mutación , Proteínas Ribosómicas/genética , Staphylococcus aureus/fisiología
12.
Proc Natl Acad Sci U S A ; 111(43): 15379-84, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25313041

RESUMEN

The prevailing "plug-in-the-bottle" model suggests that macrolide antibiotics inhibit translation by binding inside the ribosome tunnel and indiscriminately arresting the elongation of every nascent polypeptide after the synthesis of six to eight amino acids. To test this model, we performed a genome-wide analysis of translation in azithromycin-treated Staphylococcus aureus. In contrast to earlier predictions, we found that the macrolide does not preferentially induce ribosome stalling near the 5' end of mRNAs, but rather acts at specific stalling sites that are scattered throughout the entire coding region. These sites are highly enriched in prolines and charged residues and are strikingly similar to other ligand-independent ribosome stalling motifs. Interestingly, the addition of structurally related macrolides had dramatically different effects on stalling efficiency. Our data suggest that ribosome stalling can occur at a surprisingly large number of low-complexity motifs in a fashion that depends only on a few arrest-inducing residues and the presence of a small molecule inducer.


Asunto(s)
Macrólidos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Análisis de Secuencia de Proteína , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Azitromicina/farmacología , Sistemas de Lectura Abierta/genética , Péptidos/metabolismo , Prolina/metabolismo , Ribosomas/metabolismo
13.
Mo Med ; 110(4): 320-4, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24003650

RESUMEN

Antibiotic resistance is a persistent health care problem worldwide. Evidence for the negative consequences of subtherapeutic feeding in livestock production has been mounting while the antibiotic pipeline is drying up. In recent years, there has been a paradigm shift in our perception of antibiotics. Apart from its roles in self-defense, antibiotics also serve as inter-microbial signaling molecules, regulators of gene expression, microbial food sources, and as mediators of host immune response.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Alimentación Animal , Animales , Antibacterianos/provisión & distribución , Reservorios de Enfermedades , Aprobación de Drogas , Descubrimiento de Drogas , Humanos
14.
J Bacteriol ; 195(13): 2991-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23625843

RESUMEN

Mutations in the ribosomal protein L22 that impair peptide-mediated translation arrest in Escherichia coli have been shown to reduce the expression of several genes, including secA, which encodes an ATPase that drives protein export via the Sec pathway. Here, we used a comparative proteomic approach to obtain insight into the global effects of the L22(Δ82-84) mutation on gene expression and protein synthesis. While the mutation did not affect or modestly affected the level of most soluble proteins, it dramatically reduced the level of antigen 43 (Ag43), a secreted virulence factor that promotes autoaggregation. The reduced protein concentration correlated with a sharp decrease in the abundance and stability of Ag43 mRNA. We found that the overexpression of secA or the inactivation of genes that encode presecretory and membrane proteins restored Ag43 production in the L22 mutant strain. Furthermore, impairment of the Sec pathway in a wild-type strain reduced Ag43 production but did not significantly affect the synthesis of other presecretory proteins. Taken together, these results indicate that Ag43 gene expression is exquisitely sensitive to the status of the Sec machinery and strongly suggest that the L22 mutation decreases the Ag43 concentration indirectly by reducing secA expression. Our results imply the existence of a novel regulatory mechanism in which the efficiency of protein export is coupled to gene expression and help to explain the modulation of SecA synthesis that has been observed in response to secretion stress.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Factores de Virulencia/metabolismo , Proteínas de Escherichia coli/genética , Mutación , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética , Factores de Virulencia/genética
15.
Mol Microbiol ; 81(2): 540-53, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21635582

RESUMEN

In Escherichia coli, secA expression is regulated at the translational level by an upstream gene (secM) that encodes a presecretory protein. SecM contains a C-terminal sequence motif that induces a transient translation arrest. Inhibition of SecM membrane targeting prolongs the translation arrest and increases SecA synthesis by concomitantly altering the structure of the secM-secA mRNA. Here we show that the SecM signal peptide plays an essential role in this regulatory process by acting as a molecular timer that co-ordinates membrane targeting with the synthesis of the arrest motif. We found that signal peptide mutations that alter targeting kinetics and insertions or deletions that change the distance between the SecM signal peptide and the arrest motif perturb the balance between the onset and release of arrest that is required to regulate SecA synthesis. Furthermore, we found that the strength of the interaction between the ribosome and the SecM arrest motif is calibrated to ensure the release of arrest upon membrane targeting. Our results strongly suggest that several distinctive features of the SecM protein evolved as a consequence of constraints imposed by the ribosome and the Sec machinery.


Asunto(s)
Adenosina Trifosfatasas/biosíntesis , Proteínas Bacterianas/biosíntesis , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/biosíntesis , Biosíntesis de Proteínas , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Mutación INDEL , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Unión Proteica , Señales de Clasificación de Proteína , Canales de Translocación SEC , Proteína SecA , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética
16.
J Bacteriol ; 193(8): 2076-7, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21217001

RESUMEN

Dickeya dadantii is a plant-pathogenic enterobacterium responsible for the soft rot disease of many plants of economic importance. We present here the sequence of strain 3937, a strain widely used as a model system for research on the molecular biology and pathogenicity of this group of bacteria.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Enterobacteriaceae/genética , Genoma Bacteriano , Enterobacteriaceae/aislamiento & purificación , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Análisis de Secuencia de ADN
17.
Mol Cell ; 34(2): 201-11, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19394297

RESUMEN

The recognition of a C-terminal motif in E. coli SecM ((150)FXXXXWIXXXXGIRAGP(166)) inside the ribosome tunnel causes translation arrest, but the mechanism of recognition is unknown. Whereas single mutations in this motif impair recognition, we demonstrate that new arrest-inducing peptides can be created through remodeling of the SecM C terminus. We found that R163 is indispensable but that flanking residues that vary in number and position play an important secondary role in translation arrest. The observation that individual SecM variants showed a distinct pattern of crosslinking to ribosomal proteins suggests that each peptide adopts a unique conformation inside the tunnel. Based on the results, we propose that translation arrest occurs when the peptide conformation specified by flanking residues moves R163 into a precise intratunnel location. Our data indicate that translation arrest results from extensive communication between SecM and the tunnel and help to explain the striking diversity of arrest-inducing peptides found throughout nature.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/genética , Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Factores de Transcripción/química , Secuencias de Aminoácidos/fisiología , Secuencia de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Mapeo de Interacción de Proteínas , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Mol Plant Microbe Interact ; 21(3): 304-14, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18257680

RESUMEN

HrpX/Y is a putative two-component system (TCS) encoded within the type III secretion system (T3SS) gene cluster of Dickeya dadantii. A linear regulatory cascade initiated by HrpX/Y that leads to activation of the downstream T3SS genes via HrpS and HrpL was described previously. Therefore, in D. dadantii, HrpX/Y plays an important role in regulation of genes involved in bacteria-plant interactions and bacterial aggregation via the T3SS. HrpX/Y is the only TCS shared among the plant-pathogenic enterobacteria that is not also present in animal-associated enterobacteria. To date, the genes known to be regulated by HrpY are restricted to the hrp and hrc genes and no signal has been identified that triggers HrpY-dependent gene expression. We demonstrated that HrpY interacts with the hrpS promoter in vitro. We then used a transposon-based system to isolate previously unidentified HrpY-dependent genes, including genes previously shown to affect virulence, including kdgM and acsC. HrpY is a dual regulator, positively regulating at least 10 genes in addition to those in the hrp gene cluster and negatively regulating at least 5 genes. The regulatory effect on one gene depended on the culture medium used. Of the 16 HrpY-regulated genes identified in this screen, 14 are not present in Pectobacterium atrosepticum, the nearest relative of D. dadantii with a sequenced genome. None of the newly identified HrpY-regulated genes were required for bacterial aggregation; thus, neither acyl-homoserine lactone-mediated quorum sensing nor the Rcs signal transduction system which regulates colanic acid, a molecule that plays an important role in biofilm formation in other enterobacteria, are required for D. dadantii aggregation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidad , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Enterobacteriaceae/metabolismo , Mutación , Fosforilación , Regiones Promotoras Genéticas , Factores de Virulencia/genética
19.
Mol Plant Microbe Interact ; 19(4): 451-7, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16610748

RESUMEN

Erwinia chrysanthemi 3937 (Ech3937) is a phytopathogenic bacterium with a wide host range. The pectinolytic enzymes secreted by the bacterium and the type III secretion system (T3SS) are essential for full virulence. We used the green fluorescent protein gene as a reporter to investigate the expression of dspE (a putative T3SS effector) and pelD (a major pectin-degrading enzyme) in populations of Ech3937 under different conditions. Gene expression was analyzed by measuring the fluorescence intensity of individual cells with a fluorescence-activated cell sorter. Ech3937 dspE was induced in minimal medium (MM) with only a portion of Ech3937 cells (43.03%) expressing dspE after 12 h of culture. The nutrient-rich King's medium B did not fully eliminate the expression of dspE; a small percentage of Ech3937 cells (5.55%) was able to express dspE after 12 h of culture in this medium. In all, 68.95% of Ech3937 cells expressed pelD after 12 h of culture in MM supplemented with polygalacturonic acid (PGA). However, 96.34% of Echl31 cells (an hrpL deletion mutant of Ech3937) expressed pelD after 12 h of culture in MM supplemented with PGA. In potato tubers, 6.32% of the bacterial cells expressed dspE 2 h after inoculation, whereas only 0.25% of the cells expressed pelD. However, after 24 h, the percentage of cells expressing pelD (68.48%) was approximately 3.5 times that of cells expressing dspE (19.39%). In contrast to potato tubers, similar proportion of Ech3937 cells expressing dspE (39.34%) and pelD (40.30%) were observed in Chinese cabbage 24 h after inoculation. From promoter activity and real-time quantitative results, the expression of pelD in Ech3937 was demonstrated to be downregulated by HrpL in MM supplemented with PGA.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/fisiología , Regulación Bacteriana de la Expresión Génica , Polisacárido Liasas/metabolismo , Brassica/microbiología , Tubérculos de la Planta/microbiología , Polisacárido Liasas/genética , Regiones Promotoras Genéticas , Solanum tuberosum/microbiología
20.
J Bacteriol ; 188(6): 2280-4, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16513758

RESUMEN

The hypersensitive response elicitor harpin (HrpN) of soft rot pathogen Erwinia chrysanthemi strains 3937 and EC16 is secreted via the type III secretion system and remains cell surface bound. Strain 3937 HrpN is essential for cell aggregation, but the C-terminal one-third of the protein is not required for aggregative activity.


Asunto(s)
Adhesión Bacteriana/fisiología , Proteínas de la Membrana Bacteriana Externa/fisiología , Dickeya chrysanthemi/fisiología , Secuencia de Aminoácidos , Adhesión Bacteriana/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/metabolismo , Dickeya chrysanthemi/genética , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...