Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(1): 112027, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36848231

RESUMEN

TET2 haploinsufficiency is a driving event in myeloid cancers and is associated with a worse prognosis in patients with acute myeloid leukemia (AML). Enhancing residual TET2 activity using vitamin C increases oxidized 5-methylcytosine (mC) formation and promotes active DNA demethylation via base excision repair (BER), which slows leukemia progression. We utilize genetic and compound library screening approaches to identify rational combination treatment strategies to improve use of vitamin C as an adjuvant therapy for AML. In addition to increasing the efficacy of several US Food and Drug Administration (FDA)-approved drugs, vitamin C treatment with poly-ADP-ribosyl polymerase inhibitors (PARPis) elicits a strong synergistic effect to block AML self-renewal in murine and human AML models. Vitamin-C-mediated TET activation combined with PARPis causes enrichment of chromatin-bound PARP1 at oxidized mCs and γH2AX accumulation during mid-S phase, leading to cell cycle stalling and differentiation. Given that most AML subtypes maintain residual TET2 expression, vitamin C could elicit broad efficacy as a PARPi therapeutic adjuvant.


Asunto(s)
Leucemia , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Humanos , Ratones , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Mutaciones Letales Sintéticas , Vitaminas
2.
Cancer Discov ; 9(7): 890-909, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31048321

RESUMEN

The BCL2 family plays important roles in acute myeloid leukemia (AML). Venetoclax, a selective BCL2 inhibitor, has received FDA approval for the treatment of AML. However, drug resistance ensues after prolonged treatment, highlighting the need for a greater understanding of the underlying mechanisms. Using a genome-wide CRISPR/Cas9 screen in human AML, we identified genes whose inactivation sensitizes AML blasts to venetoclax. Genes involved in mitochondrial organization and function were significantly depleted throughout our screen, including the mitochondrial chaperonin CLPB. We demonstrated that CLPB is upregulated in human AML, it is further induced upon acquisition of venetoclax resistance, and its ablation sensitizes AML to venetoclax. Mechanistically, CLPB maintains the mitochondrial cristae structure via its interaction with the cristae-shaping protein OPA1, whereas its loss promotes apoptosis by inducing cristae remodeling and mitochondrial stress responses. Overall, our data suggest that targeting mitochondrial architecture may provide a promising approach to circumvent venetoclax resistance. SIGNIFICANCE: A genome-wide CRISPR/Cas9 screen reveals genes involved in mitochondrial biological processes participate in the acquisition of venetoclax resistance. Loss of the mitochondrial protein CLPB leads to structural and functional defects of mitochondria, hence sensitizing AML cells to apoptosis. Targeting CLPB synergizes with venetoclax and the venetoclax/azacitidine combination in AML in a p53-independent manner.See related commentary by Savona and Rathmell, p. 831.This article is highlighted in the In This Issue feature, p. 813.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Sulfonamidas/farmacología , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Resistencia a Antineoplásicos , Endopeptidasa Clp/antagonistas & inhibidores , Endopeptidasa Clp/metabolismo , GTP Fosfohidrolasas/biosíntesis , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Células K562 , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cell Rep ; 21(11): 3317-3328, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29241556

RESUMEN

Obesity is a major human health crisis that promotes insulin resistance and, ultimately, type 2 diabetes. The molecular mechanisms that mediate this response occur across many highly complex biological regulatory levels that are incompletely understood. Here, we present a comprehensive molecular systems biology study of hepatic responses to high-fat feeding in mice. We interrogated diet-induced epigenomic, transcriptomic, proteomic, and metabolomic alterations using high-throughput omic methods and used a network modeling approach to integrate these diverse molecular signals. Our model indicated that disruption of hepatic architecture and enhanced hepatocyte apoptosis are among the numerous biological processes that contribute to early liver dysfunction and low-grade inflammation during the development of diet-induced metabolic syndrome. We validated these model findings with additional experiments on mouse liver sections. In total, we present an integrative systems biology study of diet-induced hepatic insulin resistance that uncovered molecular features promoting the development and maintenance of metabolic disease.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Hígado/metabolismo , Metaboloma/genética , Obesidad/genética , Transcriptoma , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Apoptosis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Hepatocitos/patología , Hepatocitos/ultraestructura , Insulina/metabolismo , Resistencia a la Insulina , Hígado/fisiopatología , Hígado/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Obesidad/fisiopatología , Mapeo de Interacción de Proteínas
5.
Nat Immunol ; 16(6): 653-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25867473

RESUMEN

The methylcytosine dioxygenase TET1 ('ten-eleven translocation 1') is an important regulator of 5-hydroxymethylcytosine (5hmC) in embryonic stem cells. The diminished expression of TET proteins and loss of 5hmC in many tumors suggests a critical role for the maintenance of this epigenetic modification. Here we found that deletion of Tet1 promoted the development of B cell lymphoma in mice. TET1 was required for maintenance of the normal abundance and distribution of 5hmC, which prevented hypermethylation of DNA, and for regulation of the B cell lineage and of genes encoding molecules involved in chromosome maintenance and DNA repair. Whole-exome sequencing of TET1-deficient tumors revealed mutations frequently found in non-Hodgkin B cell lymphoma (B-NHL), in which TET1 was hypermethylated and transcriptionally silenced. Our findings provide in vivo evidence of a function for TET1 as a tumor suppressor of hematopoietic malignancy.


Asunto(s)
Linfocitos B/fisiología , Citosina/análogos & derivados , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/fisiología , Linfoma de Células B/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Inestabilidad Cromosómica , Citosina/metabolismo , Metilación de ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Epigénesis Genética , Exoma/genética , Perfilación de la Expresión Génica , Humanos , Ratones , Mutación/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética
6.
Cell Rep ; 5(1): 259-70, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24095730

RESUMEN

Diet-induced obesity (DIO) predisposes individuals to insulin resistance, and adipose tissue has a major role in the disease. Insulin resistance can be induced in cultured adipocytes by a variety of treatments, but what aspects of the in vivo responses are captured by these models remains unknown. We use global RNA sequencing to investigate changes induced by TNF-α, hypoxia, dexamethasone, high insulin, and a combination of TNF-α and hypoxia, comparing the results to the changes in white adipose tissue from DIO mice. We found that different in vitro models capture distinct features of DIO adipose insulin resistance, and a combined treatment of TNF-α and hypoxia is most able to mimic the in vivo changes. Using genome-wide DNase I hypersensitivity followed by sequencing, we further examined the transcriptional regulation of TNF-α-induced insulin resistance, and we found that C/EPBß is a potential key regulator of adipose insulin resistance.


Asunto(s)
Tejido Adiposo/metabolismo , Resistencia a la Insulina/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
7.
Proc Natl Acad Sci U S A ; 110(6): 2354-9, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23341638

RESUMEN

The earliest stages of Huntington disease are marked by changes in gene expression that are caused in an indirect and poorly understood manner by polyglutamine expansions in the huntingtin (HTT) protein. To explore the hypothesis that DNA methylation may be altered in cells expressing mutated HTT, we use reduced representation bisulfite sequencing (RRBS) to map sites of DNA methylation in cells carrying either wild-type or mutant HTT. We find that a large fraction of the genes that change in expression in the presence of mutant huntingtin demonstrate significant changes in DNA methylation. Regions with low CpG content, which have previously been shown to undergo methylation changes in response to neuronal activity, are disproportionately affected. On the basis of the sequence of regions that change in methylation, we identify AP-1 and SOX2 as transcriptional regulators associated with DNA methylation changes, and we confirm these hypotheses using genome-wide chromatin immunoprecipitation sequencing (ChIP-Seq). Our findings suggest new mechanisms for the effects of polyglutamine-expanded HTT. These results also raise important questions about the potential effects of changes in DNA methylation on neurogenesis and cognitive decline in patients with Huntington disease.


Asunto(s)
Metilación de ADN , Proteínas Mutantes/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Islas de CpG , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Factores de Transcripción SOXB1/metabolismo , Factor de Transcripción AP-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...