Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 29(21): 34411-34426, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809232

RESUMEN

A 3-D instrument self-shading correction has been developed for the MOBY upwelling radiance measurements. This correction was tested using the 23 year time series of MOBY measurements, at the Lanai, Hawaii site. The correction is small (less than 2%) except when the sun and collectors are aligned within 20° azimuth on opposite sides of the main MOBY structure. Estimates of the correction uncertainty were made with a Monte-Carlo method and the variation of the model input parameters at this site. The correction uncertainty was generally less than 1%, but increased to 30% of the correction in the strongest shadow region.

2.
J Atmos Ocean Technol ; 34(7): 1423-1432, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28804202

RESUMEN

The upwelling radiance attenuation coefficient (KLu) in the upper 10 m of the water column can be significantly influenced by inelastic scattering processes, and thus will vary even with homogeneous water properties. The Marine Optical BuoY (MOBY), the primary vicarious calibration site for many ocean color sensors, makes measurements of the upwelling radiance (Lu) at 1 m, 5 m, and 9 m and uses these values to determine KLu and propagate the upwelling radiance directed toward the zenith, Lu, at 1 m to and through the surface. Inelastic scattering causes the KLu derived from the arm measurements to be an underestimate of the true KLu from 1 m to the surface at wavelengths greater than 575 nm, thus the derived water leaving radiance is underestimated at wavelengths longer than 575 nm. A method to correct this KLu, based on a model of the upwelling radiance including Raman scattering and chlorophyll fluorescence has been developed which corrects this bias. The model has been experimentally validated, and this technique can be applied to the MOBY data set to provide new, more accurate products at these wavelengths. When applied to a 4 month MOBY deployment, the corrected water leaving radiance, Lw, can increase by 5 % (600 nm), 10 % (650 nm) and 50 % (700 nm). This method will be used to provide additional more accurate products in the MOBY data set.

3.
Artículo en Inglés | MEDLINE | ID: mdl-28804228

RESUMEN

The immersion coefficient accounts for the difference in responsivity for a radiometer placed in the air versus water or another medium. In this study, the immersion coefficients for the radiance collectors on the Marine Optical Buoy (MOBY) were modeled and measured. The experiment showed that the immersion coefficient for the MOBY radiance collectors agreed with a simple model using only the index of refraction for water and fused silica. With the results of this experiment, we estimate that the uncertainty in the current value of the immersion coefficient used in the MOBY project is 0.05 % (k = 1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...