Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 626(7998): 294-299, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326595

RESUMEN

An essential ingredient for the production of Majorana fermions for use in quantum computing is topological superconductivity1,2. As bulk topological superconductors remain elusive, the most promising approaches exploit proximity-induced superconductivity3, making systems fragile and difficult to realize4-7. Due to their intrinsic topology8, Weyl semimetals are also potential candidates1,2, but have always been connected with bulk superconductivity, leaving the possibility of intrinsic superconductivity of their topological surface states, the Fermi arcs, practically without attention, even from the theory side. Here, by means of angle-resolved photoemission spectroscopy and ab initio calculations, we identify topological Fermi arcs on two opposing surfaces of the non-centrosymmetric Weyl material trigonal PtBi2 (ref. 9). We show these states become superconducting at temperatures around 10 K. Remarkably, the corresponding coherence peaks appear as the strongest and sharpest excitations ever detected by photoemission from solids. Our findings indicate that superconductivity in PtBi2 can occur exclusively at the surface, rendering it a possible platform to host Majorana modes in intrinsically topological superconductor-normal metal-superconductor Josephson junctions.

2.
Nat Commun ; 13(1): 4132, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840603

RESUMEN

Fermi surfaces are essential for predicting, characterizing and controlling the properties of crystalline metals and semiconductors. Angle-resolved photoemission spectroscopy (ARPES) is the only technique directly probing the Fermi surface by measuring the Fermi momenta (kF) from energy- and angular distribution of photoelectrons dislodged by monochromatic light. Existing apparatus is able to determine a number of kF -vectors simultaneously, but direct high-resolution 3D Fermi surface mapping remains problematic. As a result, no such datasets exist, strongly limiting our knowledge about the Fermi surfaces. Here we show that using a simpler instrumentation it is possible to perform 3D-mapping within a very short time interval and with very high resolution. We present the first detailed experimental 3D Fermi surface as well as other experimental results featuring advantages of our technique. In combination with various light sources our methodology and instrumentation offer new opportunities for high-resolution ARPES in the physical and life sciences.

3.
Nat Mater ; 21(6): 627-633, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35228661

RESUMEN

(Ba,K)BiO3 constitute an interesting class of superconductors, where the remarkably high superconducting transition temperature Tc of 30 K arises in proximity to charge density wave order. However, the precise mechanism behind these phases remains unclear. Here, enabled by high-pressure synthesis, we report superconductivity in (Ba,K)SbO3 with a positive oxygen-metal charge transfer energy in contrast to (Ba,K)BiO3. The parent compound BaSbO3-δ shows a larger charge density wave gap compared to BaBiO3. As the charge density wave order is suppressed via potassium substitution up to 65%, superconductivity emerges, rising up to Tc = 15 K. This value is lower than the maximum Tc of (Ba,K)BiO3, but higher by more than a factor of two at comparable potassium concentrations. The discovery of an enhanced charge density wave gap and superconductivity in (Ba,K)SbO3 indicates that strong oxygen-metal covalency may be more essential than the sign of the charge transfer energy in the main-group perovskite superconductors.

4.
Proc Natl Acad Sci U S A ; 118(30)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301905

RESUMEN

We have used atomic layer-by-layer oxide molecular beam epitaxy to grow epitaxial thin films of [Formula: see text] with x up to 0.5, greatly exceeding the solubility limit of Ca in bulk systems ([Formula: see text]). A comparison of the optical conductivity measured by spectroscopic ellipsometry to prior predictions from dynamical mean-field theory demonstrates that the hole concentration p is approximately equal to x. We find superconductivity with [Formula: see text] of 15 to 20 K up to the highest doping levels and attribute the unusual stability of superconductivity in [Formula: see text] to the nearly identical radii of La and Ca ions, which minimizes the impact of structural disorder. We conclude that careful disorder management can greatly extend the "superconducting dome" in the phase diagram of the cuprates.

5.
Nat Commun ; 10(1): 3424, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366883

RESUMEN

Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi2. We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties.

6.
Chemistry ; 25(23): 5865-5869, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30714648

RESUMEN

X-ray absorption spectroscopy (XAS) was used to elucidate changes in the electronic structure caused by the pressure-induced structural collapse in EuCo2 P2 . The spectral changes observed at the L3 -edge of Eu and K-edges of Co and P suggest electron density redistribution, which contradicts the formal charges calculated from the commonly used Zintl-Klemm concept. Quantum-chemical calculations show that, despite the increase in the oxidation state of Eu and the formation of a weak P-P bond in the high-pressure phase, the electron transfer from the Eu 4f orbitals to the hybridized 5d and 6s states causes strengthening of the Eu-P and P-P bonds. These changes explain the increased electron density on P atoms, deduced from the P K-edge XAS spectra. This work shows that the formal electron counting schemes do not provide an adequate description of changes associated with phase transitions in metallic systems with substantial mixing of the electronic states.

7.
Phys Rev Lett ; 121(20): 206401, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30500241

RESUMEN

The search for one-dimensional (1D) topologically protected electronic states has become an important research goal for condensed matter physics owing to their potential use in spintronic devices or as a building block for topologically nontrivial electronic states. Using low temperature scanning tunneling microscopy, we demonstrate the formation of 1D electronic states at twin boundaries at the surface of the noncentrosymmetric material BiPd. These twin boundaries are topological defects that separate regions with antiparallel orientations of the crystallographic b axis. We demonstrate that the formation of the 1D electronic states can be rationalized by a change in effective mass of two-dimensional surface states across the twin boundary. Our work therefore reveals a novel route towards designing 1D electronic states with strong spin-orbit coupling.

8.
Nat Commun ; 6: 6633, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25818338

RESUMEN

In non-magnetic bulk materials, inversion symmetry protects the spin degeneracy. If the bulk crystal structure lacks a centre of inversion, however, spin-orbit interactions lift the spin degeneracy, leading to a Rashba metal whose Fermi surfaces exhibit an intricate spin texture. In superconducting Rashba metals a pairing wavefunction constructed from these complex spin structures will generally contain both singlet and triplet character. Here we examine the possible triplet components of the order parameter in noncentrosymmetric BiPd, combining for the first time in a noncentrosymmetric superconductor macroscopic characterization, atomic-scale ultra-low-temperature scanning tunnelling spectroscopy, and relativistic first-principles calculations. While the superconducting state of BiPd appears topologically trivial, consistent with Bardeen-Cooper-Schrieffer theory with an order parameter governed by a single isotropic s-wave gap, we show that the material exhibits Dirac-cone surface states with a helical spin polarization.

9.
Sci Rep ; 4: 6818, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25351992

RESUMEN

The complex iridium oxide Na3Ir3O8 with a B-site ordered spinel structure was synthesized in single crystalline form, where the chiral hyper-kagome lattice of Ir ions, as observed in the spin-liquid candidate Na4Ir3O8, was identified. The average valence of Ir is 4.33+ and, therefore, Na3Ir3O8 can be viewed as a doped analogue of the hyper-kagome spin liquid with Ir(4+). The transport measurements, combined with the electronic structure calculations, indicate that the ground state of Na3Ir3O8 is a low carrier density semi-metal. We argue that the semi-metallic state is produced by a competition of the molecular orbital splitting of t2g orbitals on Ir3 triangles with strong spin-orbit coupling inherent to heavy Ir ions.

10.
Science ; 345(6197): 653-6, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25081481

RESUMEN

Spin-polarized scanning tunneling microscopy (SP-STM) has been used extensively to study magnetic properties of nanostructures. Using SP-STM to visualize magnetic order in strongly correlated materials on an atomic scale is highly desirable, but challenging. We achieved this goal in iron tellurium (Fe(1+ y)Te), the nonsuperconducting parent compound of the iron chalcogenides, by using a STM tip with a magnetic cluster at its apex. Our images of the magnetic structure reveal that the magnetic order in the monoclinic phase is a unidirectional stripe order; in the orthorhombic phase at higher excess iron concentration (y > 0.12), a transition to a phase with coexisting magnetic orders in both directions is observed. It may be possible to generalize the technique to other high-temperature superconductor families, such as the cuprates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...