Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139228

RESUMEN

The CD133 cell membrane glycoprotein, also termed prominin-1, is expressed on some of the tumor cells of both solid and blood malignancies. The CD133-positive tumor cells were shown to exhibit higher proliferative activity, greater chemo- and radioresistance, and enhanced tumorigenicity compared to their CD133-negative counterparts. For this reason, CD133 is regarded as a potential prognostic biomarker in oncology. The CD133-positive cells are related to the cancer stem cell subpopulation in many types of cancer. Recent studies demonstrated the involvement of CD133 in the regulation of proliferation, autophagy, and apoptosis in cancer cells. There is also evidence of its participation in the epithelial-mesenchymal transition associated with tumor progression. For a number of malignant tumor types, high CD133 expression is associated with poor prognosis, and the prognostic significance of CD133 has been confirmed in a number of meta-analyses. However, some published papers suggest that CD133 has no prognostic significance or even demonstrate a certain correlation between high CD133 levels and a positive prognosis. This review summarizes and discusses the existing evidence for and against the prognostic significance of CD133 in cancer. We also consider possible reasons for conflicting findings from the studies of the clinical significance of CD133.


Asunto(s)
Neoplasias , Humanos , Pronóstico , Neoplasias/metabolismo , Apoptosis , Biomarcadores/metabolismo , Antígeno AC133/metabolismo , Células Madre Neoplásicas/metabolismo , Biomarcadores de Tumor/metabolismo
2.
PeerJ ; 11: e16358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025691

RESUMEN

Background: Cell therapy using neural progenitor cells (NPCs) is a promising approach for ischemic stroke treatment according to the results of multiple preclinical studies in animal stroke models. In the vast majority of conducted animal studies, the therapeutic efficacy of NPCs was estimated after intracerebral transplantation, while the information of the effectiveness of systemic administration is limited. Nowadays, several clinical trials aimed to estimate the safety and efficacy of NPCs transplantation in stroke patients were also conducted. In these studies, NPCs were transplanted intracerebrally in the subacute/chronic phase of stroke. The results of clinical trials confirmed the safety of the approach, however, the degree of functional improvement (the primary efficacy endpoint) was not sufficient in the majority of the studies. Therefore, more studies are needed in order to investigate the optimal transplantation parameters, especially the timing of cell transplantation after the stroke onset. This study aimed to evaluate the therapeutic effects of intra-arterial (IA) and intravenous (IV) administration of NPCs derived from induced pluripotent stem cells (iNPCs) in the acute phase of experimental stroke in rats. Induced pluripotent stem cells were chosen as the source of NPCs as this technology is perspective, has no ethical concerns and provides the access to personalized medicine. Methods: Human iNPCs were transplanted IA or IV into male Wistar rats 24 h after the middle cerebral artery occlusion stroke modeling. Therapeutic efficacy was monitored for 14 days and evaluated in comparison with the cell transplantation-free control group. Additionally, cell distribution in the brain was assessed. Results: The obtained results show that both routes of systemic transplantation (IV and IA) significantly reduced the mortality and improved the neurological deficit of experimental animals compared to the control group. At the same time, according to the MRI data, only IA administration led to faster and prominent reduction of the stroke volume. After IA administration, iNPCs transiently trapped in the brain and were not detected on day 7 after the transplantation. In case of IV injection, transplanted cells were not visualized in the brain. The obtained data demonstrated that the systemic transplantation of human iNPCs in the acute phase of ischemic stroke can be a promising therapeutic strategy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Accidente Cerebrovascular Isquémico , Células-Madre Neurales , Accidente Cerebrovascular , Humanos , Ratas , Masculino , Animales , Ratas Wistar , Accidente Cerebrovascular/terapia , Células-Madre Neurales/trasplante , Infarto de la Arteria Cerebral Media/terapia
3.
Biomedicines ; 11(11)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38002056

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a serious public health issue associated with the obesity pandemic. Obesity is the main risk factor for the non-alcoholic fatty liver disease (NAFLD), which progresses to NASH and then to end-stage liver disease. Currently, there are no specific pharmacotherapies of NAFLD/NASH approved by the FDA or other national regulatory bodies and the treatment includes lifestyle adjustment and medicines for improving lipid metabolism, enhancing sensitivity to insulin, balancing oxidation, and counteracting fibrosis. Accordingly, further basic research and development of new therapeutic approaches are greatly needed. Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles prevent induced hepatocyte death in vitro and attenuate NASH symptoms in animal models of the disease. They interact with hepatocytes directly, but also target other liver cells, including Kupffer cells and macrophages recruited from the blood flow. This review provides an update on the pathogenesis of NAFLD/NASH and the key role of macrophages in the development of the disease. We examine in detail the mechanisms of the cross-talk between the MSCs and the macrophages, which are likely to be among the key targets of MSCs and their derivatives in the course of NAFLD/NASH cell therapy.

4.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894893

RESUMEN

Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.


Asunto(s)
Hepatopatías , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Hepatocitos/metabolismo , Hepatopatías/metabolismo , Células Madre Mesenquimatosas/metabolismo , Homeostasis
5.
Life (Basel) ; 13(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36836645

RESUMEN

Systemic transplantation of mesenchymal stem cells (MSCs) is a promising approach for the treatment of ischemia-associated disorders, including stroke. However, exact mechanisms underlying its beneficial effects are still debated. In this respect, studies of the transplanted cells distribution and homing are indispensable. We proposed an MRI protocol which allowed us to estimate the dynamic distribution of single superparamagnetic iron oxide labeled MSCs in live ischemic rat brain during intravenous transplantation after the transient middle cerebral artery occlusion. Additionally, we evaluated therapeutic efficacy of cell therapy in this rat stroke model. According to the dynamic MRI data, limited numbers of MSCs accumulated diffusely in the brain vessels starting at the 7th minute from the onset of infusion, reached its maximum by 29 min, and gradually eliminated from cerebral circulation during 24 h. Despite low numbers of cells entering brain blood flow and their short-term engraftment, MSCs transplantation induced long lasting improvement of the neurological deficit, but without acceleration of the stroke volume reduction compared to the control animals during 14 post-transplantation days. Taken together, these findings indicate that MSCs convey their positive action by triggering certain paracrine mechanisms or cell-cell interactions or invoking direct long-lasting effects on brain vessels.

6.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430704

RESUMEN

Glioma is the most common type of primary CNS tumor, composed of cells that resemble normal glial cells. Recent genetic studies have provided insight into the inter-tumoral heterogeneity of gliomas, resulting in the updated 2021 WHO classification of gliomas. Thorough understanding of inter-tumoral heterogeneity has already improved the prognosis and treatment outcomes of some types of gliomas. Currently, the challenge for researchers is to study the intratumoral cell heterogeneity of newly defined glioma subtypes. Cancer stem cells (CSCs) present in gliomas and many other tumors are an example of intratumoral heterogeneity of great importance. In this review, we discuss the modern concept of glioma stem cells and recent single-cell sequencing-driven progress in the research of intratumoral glioma cell heterogeneity. The particular emphasis was placed on the recently revealed variations of the cell composition of the subtypes of the adult-type diffuse gliomas, including astrocytoma, oligodendroglioma and glioblastoma. The novel data explain the inconsistencies in earlier glioma stem cell research and also provide insight into the development of more effective targeted therapy and the cell-based immunotherapy of gliomas. Separate sections are devoted to the description of single-cell sequencing approach and its role in the development of cell-based immunotherapies for glioma.


Asunto(s)
Astrocitoma , Glioblastoma , Glioma , Oligodendroglioma , Humanos , Glioma/genética , Glioma/terapia , Glioma/patología , Oligodendroglioma/patología , Glioblastoma/patología , Astrocitoma/patología , Células Madre Neoplásicas/patología
7.
Curr Issues Mol Biol ; 44(11): 5153-5172, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36354663

RESUMEN

Over the past two decades, mesenchymal stem cells (MSCs) have shown promising therapeutic effects both in preclinical studies (in animal models of a wide range of diseases) and in clinical trials. However, the efficacy of MSC-based therapy is not always predictable. Moreover, despite the large number of studies, the mechanisms underlying the regenerative potential of MSCs are not fully elucidated. Recently, it has been reliably established that transplanted MSCs can undergo rapid apoptosis and clearance from the recipient's body, still exhibiting therapeutic effects, especially those associated with their immunosuppressive/immunomodulating properties. The mechanisms underlying these effects can be mediated by the efferocytosis of apoptotic MSCs by host phagocytic cells. In this concise review, we briefly describe three types of MSC-generated extracellular vesicles, through which their therapeutic functions can potentially be carried out; we focused on reviewing recent data on apoptotic MSCs and MSC-derived apoptotic bodies (MSC-ApoBDs), their functions, and the mechanisms of their therapeutic effects.

8.
Biomedicines ; 10(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36289597

RESUMEN

Stem cells serve as a source of cellular material in embryogenesis and postnatal growth and regeneration. This requires significant proliferative potential ensured by sufficient telomere length. Telomere attrition in the stem cells and their niche cells can result in the exhaustion of the regenerative potential of high-turnover organs, causing or contributing to the onset of age-related diseases. In this review, stem cells are examined in the context of the current telomere-centric theory of cell aging, which assumes that telomere shortening depends not just on the number of cell doublings (mitotic clock) but also on the influence of various internal and external factors. The influence of the telomerase and telomere length on the functional activity of different stem cell types, as well as on their aging and prospects of use in cell therapy applications, is discussed.

9.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077272

RESUMEN

CD133 is an extensively studied marker of the most malignant tumor cell population, designated as cancer stem cells (CSCs). However, the function of this glycoprotein and its involvement in cell regulatory cascades are still poorly understood. Here we show a positive correlation between the level of CD133 plasma membrane expression and the proliferative activity of cells of the Caco-2, HT-29, and HUH7 cancer cell lines. Despite a substantial difference in the proliferative activities of cell populations with different levels of CD133 expression, transcriptomic and proteomic profiling revealed only minor distinctions between them. Nonetheless, a further in silico assessment of the differentially expressed transcripts and proteins revealed 16 proteins that could be involved in the regulation of CD133 expression; these were assigned ranks reflecting the apparent extent of their involvement. Among them, the TRIM28 transcription factor had the highest rank. The prominent role of TRIM28 in CD133 expression modulation was confirmed experimentally in the Caco2 cell line clones: the knockout, though not the knockdown, of the TRIM28 gene downregulated CD133. These results for the first time highlight an important role of the TRIM28 transcription factor in the regulation of CD133-associated cancer cell heterogeneity.


Asunto(s)
Antígeno AC133/genética , Células Madre Neoplásicas/citología , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Antígeno AC133/metabolismo , Células CACO-2 , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Fenotipo , Proteómica , Factores de Transcripción/metabolismo
10.
Curr Issues Mol Biol ; 44(8): 3428-3443, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36005132

RESUMEN

Mesenchymal stem cells (MSCs) have a pronounced therapeutic potential in various pathological conditions. Though therapeutic effects of MSC transplantation have been studied for a long time, the underlying mechanisms are still not clear. It has been shown that transplanted MSCs are rapidly eliminated, presumably by apoptosis. As the mechanisms of MSC apoptosis are not fully understood, in the present work we analyzed MSC sensitivity to Fas-induced apoptosis using MSCs isolated from the biopsies of liver fibrosis patients (L-MSCs). The level of cell death was analyzed by flow cytometry in the propidium iodide test. The luminescent ATP assay was used to measure cellular ATP levels; and the mitochondrial membrane potential was assessed using the potential-dependent dye JC-1. We found that human L-MSCs were resistant to Fas-induced cell death over a wide range of FasL and anti-Fas mAb concentrations. At the same time, intrinsic death signal inducers CoCl2 and staurosporine caused apoptosis of L-MSCs in a dose-dependent manner. Despite the absence of Fas-induced cell death treatment of L-MSCs with low concentrations of FasL or anti-Fas mAb resulted in a cellular ATP level decrease, while high concentrations of the inducers caused a decline of the mitochondrial membrane potential. Pre-incubation of L-MSCs with the pro-inflammatory cytokine TNF-α did not promote L-MSC cell death. Our data indicate that human L-MSCs have increased resistance to receptor-mediated cell death even under inflammatory conditions.

11.
Biomedicines ; 10(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35203560

RESUMEN

Intra-arterial (IA) mesenchymal stem cells (MSCs) transplantation providing targeted cell delivery to brain tissue is a promising approach to the treatment of neurological disorders, including stroke. Factors determining cell distribution after IA administration have not been fully elucidated. Their decoding may contribute to the improvement of a transplantation technique and facilitate translation of stroke cell therapy into clinical practice. The goal of this work was to quantitatively assess the impact of brain tissue perfusion on the distribution of IA transplanted MSCs in rat brains. We performed a selective MR-perfusion study with bolus IA injection of gadolinium-based contrast agent and subsequent IA transplantation of MSCs in intact rats and rats with experimental stroke and evaluated the correlation between different perfusion parameters and cell distribution estimated by susceptibility weighted imaging (SWI) immediately after cell transplantation. The obtained results revealed a certain correlation between the distribution of IA transplanted MSCs and brain perfusion in both intact rats and rats with experimental stroke with the coefficient of determination up to 30%. It can be concluded that the distribution of MSCs after IA injection can be partially predicted based on cerebral perfusion data, but other factors requiring further investigation also have a significant impact on the fate of transplanted cells.

12.
Cells ; 10(11)2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34831220

RESUMEN

Animal model studies and first clinical trials have demonstrated the safety and efficacy of the mesenchymal stem cells' (MSCs) transplantation in stroke. Intra-arterial (IA) administration looks especially promising, since it provides targeted cell delivery to the ischemic brain, is highly effective, and can be safe as long as the infusion is conducted appropriately. However, wider clinical application of the IA MSCs transplantation will only be possible after a better understanding of the mechanism of their therapeutic action is achieved. On the way to achieve this goal, the study of transplanted cells' fate and their interactions with the blood-brain barrier (BBB) structures could be one of the key factors. In this review, we analyze the available data concerning one of the most important aspects of the transplanted MSCs' action-the ability of cells to cross the blood-brain barrier (BBB) in vitro and in vivo after IA administration into animals with experimental stroke. The collected data show that some of the transplanted MSCs temporarily attach to the walls of the cerebral vessels and then return to the bloodstream or penetrate the BBB and either undergo homing in the perivascular space or penetrate deeper into the parenchyma. Transmigration across the BBB is not necessary for the induction of therapeutic effects, which can be incited through a paracrine mechanism even by cells located inside the blood vessels.


Asunto(s)
Barrera Hematoencefálica/patología , Tratamiento Basado en Trasplante de Células y Tejidos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Accidente Cerebrovascular/terapia , Animales , Ensayos Clínicos como Asunto , Humanos , Inyecciones Intraarteriales
13.
Biomedicines ; 9(10)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34680403

RESUMEN

A comparative analysis of the cell surface markers and immunological properties of cell cultures originating from normal endometrium and endometrioid heterotopias of women with extragenital endometriosis was carried out. Both types of cell cultures expressed surface molecules typical of mesenchymal stromal cells and did not express hematopoietic and epithelial markers. Despite similar phenotype, the mesenchymal stromal cells derived from the two sources had different immunomodulation capacities: the cells of endometrioid heterotopias but not eutopic endometrium could suppress dendritic cell differentiation from monocytes as well as lymphocyte proliferation in allogeneic co-cultures. A comparative multiplex analysis of the secretomes revealed a significant increase in the secretion of pro-inflammatory mediators, including IL6, IFN-γ, and several chemokines associated with inflammation by the stromal cells of ectopic lesions. The results demonstrate that the stromal cells of endometrioid heterotopias display enhanced pro-inflammatory and immunosuppressive activities, which most likely impact the pathogenesis and progression of the disease.

14.
Biomolecules ; 11(6)2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207065

RESUMEN

Induced granulocytic differentiation of human leukemic cells under all-trans-retinoid acid (ATRA) treatment underlies differentiation therapy of acute myeloid leukemia. Knowing the regulation of this process it is possible to identify potential targets for antileukemic drugs and develop novel approaches to differentiation therapy. In this study, we have performed transcriptomic and proteomic profiling to reveal up- and down-regulated transcripts and proteins during time-course experiments. Using data on differentially expressed transcripts and proteins we have applied upstream regulator search and obtained transcriptome- and proteome-based regulatory networks of induced granulocytic differentiation that cover both up-regulated (HIC1, NFKBIA, and CASP9) and down-regulated (PARP1, VDR, and RXRA) elements. To verify the designed network we measured HIC1 and PARP1 protein abundance during granulocytic differentiation by selected reaction monitoring (SRM) using stable isotopically labeled peptide standards. We also revealed that transcription factor CEBPB and LYN kinase were involved in differentiation onset, and evaluated their protein levels by SRM technique. Obtained results indicate that the omics data reflect involvement of the DNA repair system and the MAPK kinase cascade as well as show the balance between the processes of the cell survival and apoptosis in a p53-independent manner. The differentially expressed transcripts and proteins, predicted transcriptional factors, and key molecules such as HIC1, CEBPB, LYN, and PARP1 may be considered as potential targets for differentiation therapy of acute myeloid leukemia.


Asunto(s)
Diferenciación Celular/fisiología , Redes Reguladoras de Genes/genética , Leucemia Mieloide/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación Leucémica de la Expresión Génica/genética , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteómica/métodos , Factores de Transcripción/metabolismo
15.
Cancer Biomark ; 32(1): 85-98, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34092615

RESUMEN

BACKGROUND: CD133 (prominin-1) is the most commonly used molecular marker of the cancer stem cells (CSCs) that maintain tumor progression and recurrence in colorectal cancer. However, the proteome of CSCs directly isolated from colorectal tumors based on CD133 expression has never been investigated. OBJECTIVE: To reveal biomarkers of CD133-positive colorectal CSCs. METHODS: Thirty colorectal tumor samples were collected from patients undergoing bowel resection. CD133-positive and CD133-negative cells were isolated by FACS. Comparative proteomic profiling was performed by LC-MS/MS analysis combined with label-free quantification. Verification of differentially expressed proteins was performed by flow cytometry or ELISA. CD133-knockout Caco-2 and HT-29 cell lines were generated using CRISPR-Cas9 gene editing. RESULTS: LC-MS/MS analysis identified 29 proteins with at least 2.5-fold higher expression in CD133-positive cells versus CD133-negative cells. Flow cytometry confirmed CEACAM5 overexpression in CD133-positive cells in all clinical samples analyzed. S100A8, S100A9, and DEFA1 were differentially expressed in only a proportion of the samples. CD133 knockout in the colon cancer cell lines Caco-2 and HT-29 did not affect the median level of CEACAM5 expression, but led to higher variance of the percentage of CEACAM5-positive cells. CONCLUSIONS: High CEACAM5 expression in colorectal cancer cells is firmly associated with the CD133-positive colorectal CSC phenotype, but it is unlikely that CD133 directly regulates CEACAM5 expression.


Asunto(s)
Antígeno AC133/metabolismo , Antígeno Carcinoembrionario/metabolismo , Neoplasias del Colon/genética , Células Madre Neoplásicas/metabolismo , Proteínas Ligadas a GPI/metabolismo , Humanos
16.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946667

RESUMEN

Transplantation of various types of stem cells as a possible therapy for stroke has been tested for years, and the results are promising. Recent investigations have shown that the administration of the conditioned media obtained after stem cell cultivation can also be effective in the therapy of the central nervous system pathology (hypothesis of their paracrine action). The aim of this study was to evaluate the therapeutic effects of the conditioned medium of hiPSC-derived glial and neuronal progenitor cells in the rat middle cerebral artery occlusion model of the ischemic stroke. Secretory activity of the cultured neuronal and glial progenitor cells was evaluated by proteomic and immunosorbent-based approaches. Therapeutic effects were assessed by overall survival, neurologic deficit and infarct volume dynamics, as well as by the end-point values of the apoptosis- and inflammation-related gene expression levels, the extent of microglia/macrophage infiltration and the numbers of formed blood vessels in the affected area of the brain. As a result, 31% of the protein species discovered in glial progenitor cells-conditioned medium and 45% in neuronal progenitor cells-conditioned medium were cell type specific. The glial progenitor cell-conditioned media showed a higher content of neurotrophins (BDNF, GDNF, CNTF and NGF). We showed that intra-arterial administration of glial progenitor cells-conditioned medium promoted a faster decrease in neurological deficit compared to the control group, reduced microglia/macrophage infiltration, reduced expression of pro-apoptotic gene Bax and pro-inflammatory cytokine gene Tnf, increased expression of anti-inflammatory cytokine genes (Il4, Il10, Il13) and promoted the formation of blood vessels within the damaged area. None of these effects were exerted by the neuronal progenitor cell-conditioned media. The results indicate pronounced cytoprotective, anti-inflammatory and angiogenic properties of soluble factors secreted by glial progenitor cells.


Asunto(s)
Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Accidente Cerebrovascular Isquémico/terapia , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/terapia , Infusiones Intraarteriales , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Masculino , Neuroglía/citología , Neuroglía/metabolismo , Ratas , Ratas Wistar
17.
Front Neurosci ; 15: 641970, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33737862

RESUMEN

Cell therapy is an emerging approach to stroke treatment with a potential to limit brain damage and enhance its restoration after the acute phase of the disease. In this study we tested directly reprogrammed neural precursor cells (drNPC) derived from adult human bone marrow cells in the rat middle cerebral artery occlusion (MCAO) model of acute ischemic stroke using human placenta mesenchymal stem cells (pMSC) as a positive control with previously confirmed efficacy. Cells were infused into the ipsilateral (right) internal carotid artery of male Wistar rats 24 h after MCAO. The main goal of this work was to evaluate real-time distribution and subsequent homing of transplanted cells in the brain. This was achieved by performing intra-arterial infusion directly inside the MRI scanner and allowed transplanted cells tracing starting from their first pass through the brain vessels. Immediately after transplantation, cells were observed in the periphery of the infarct zone and in the brain stem, 15 min later small numbers of cells could be discovered deep in the infarct core and in the contralateral hemisphere, where drNPC were seen earlier and in greater numbers than pMSC. Transplanted cells in both groups could no longer be detected in the rat brain 48-72 h after infusion. Histological and histochemical analysis demonstrated that both the drNPC and pMSC were localized inside blood vessels in close contact with the vascular wall. No passage of labeled cells through the blood brain barrier was observed. Additionally, the therapeutic effects of drNPC and pMSC were compared. Both drNPC and pMSC induced substantial attenuation of neurological deficits evaluated at the 7th and 14th day after transplantation using the modified neurological severity score (mNSS). Some of the effects of drNPC and pMSC, such as the influence on the infarct volume and the survival rate of animals, differed. The results suggest a paracrine mechanism of the positive therapeutic effects of IA drNPC and pMSC infusion, potentially enhanced by the cell-cell interactions. Our data also indicate that the long-term homing of transplanted cells in the brain is not necessary for the brain's functional recovery.

18.
Biology (Basel) ; 11(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35053016

RESUMEN

Sprouting angiogenesis is the common response of live tissues to physiological and pathological angiogenic stimuli. Its accurate evaluation is of utmost importance for basic research and practical medicine and pharmacology and requires adequate experimental models. A variety of assays for angiogenesis were developed, none of them perfect. In vitro approaches are generally less physiologically relevant due to the omission of essential components regulating the process. However, only in vitro models can be entirely non-xenogeneic. The limitations of the in vitro angiogenesis assays can be partially overcome using 3D models mimicking tissue O2 and nutrient gradients, the influence of the extracellular matrix (ECM), and enabling cell-cell interactions. Here we present a review of the existing models of sprouting angiogenesis that are based on the use of endothelial cells (ECs) co-cultured with perivascular or other stromal cells. This approach provides an excellent in vitro platform for further decoding of the cellular and molecular mechanisms of sprouting angiogenesis under conditions close to the in vivo conditions, as well as for preclinical drug testing and preclinical research in tissue engineering and regenerative medicine.

19.
Biomedicines ; 8(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333803

RESUMEN

Cell therapy of neurological diseases is gaining momentum. Various types of stem/progenitor cells and their derivatives have shown positive therapeutic results in animal models of neurological disorders and in clinical trials. Each tested cell type proved to have its advantages and flaws and unique cellular and molecular mechanism of action, prompting the idea to test combined transplantation of two or more types of cells (combined cell therapy). This review summarizes the results of combined cell therapy of neurological pathologies reported up to this point. The number of papers describing experimental studies or clinical trials addressing this subject is still limited. However, its successful application to the treatment of neurological pathologies including stroke, spinal cord injury, neurodegenerative diseases, Duchenne muscular dystrophy, and retinal degeneration has been reported in both experimental and clinical studies. The advantages of combined cell therapy can be realized by simple summation of beneficial effects of different cells. Alternatively, one kind of cells can support the survival and functioning of the other by enhancing the formation of optimum environment or immunomodulation. No significant adverse events were reported. Combined cell therapy is a promising approach for the treatment of neurological disorders, but further research needs to be conducted.

20.
J Proteome Res ; 19(12): 4901-4906, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33202127

RESUMEN

One of the main goals of the Chromosome-Centric Human Proteome Project (C-HPP) is detection of "missing proteins" (PE2-PE4). Using the UPS2 (Universal proteomics standard 2) set as a model to simulate the range of protein concentrations in the cell, we have previously shown that 2D fractionation enables the detection of more than 95% of UPS2 proteins in a complex biological mixture. In this study, we propose a novel experimental workflow for protein detection during the analysis of biological samples. This approach is extremely important in the context of the C-HPP and the neXt-MP50 Challenge, which can be solved by increasing the sensitivity and the coverage of the proteome encoded by a particular human chromosome. In this study, we used 2D fractionation for in-depth analysis of the proteins encoded by human chromosome 18 (Chr 18) in the HepG2 cell line. Use of 2D fractionation increased the sensitivity of the SRM SIS method by 1.3-fold (68 and 88 proteins were identified by 1D fractionation and 2D fractionation, respectively) and the shotgun MS/MS method by 2.5-fold (21 and 53 proteins encoded by Chr 18 were detected by 1D fractionation and 2D fractionation, respectively). The results of all experiments indicate that 111 proteins encoded by human Chr 18 have been identified; this list includes 42% of the Chr 18 protein-coding genes and 67% of the Chr 18 transcriptome species (Illumina RNaseq) in the HepG2 cell line obtained using a single sample. Corresponding mRNAs were not registered for 13 of the detected proteins. The combination of 2D fractionation technology with SRM SIS and shotgun mass spectrometric analysis did not achieve full coverage, i.e., identification of at least one protein product for each of the 265 protein-coding genes of the selected chromosome. To further increase the sensitivity of the method, we plan to use 5-10 crude synthetic peptides for each protein to identify the proteins and select one of the peptides based on the obtained mass spectra for the synthesis of an isotopically labeled standard for subsequent quantitative analysis. Data are available via ProteomeXchange with the identifier PXD019263.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Cromosomas Humanos , Humanos , Proteoma/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...