Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
ACS Omega ; 9(17): 19461-19480, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38708276

RESUMEN

Nile blue (NB) dye is a highly toxic substance that when discharged into sewage presents a significant risk to the environment and human health. Carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and their nanocomposites, offer considerable potential for eliminating hazardous pollutants from aqueous systems. In this study, we have successfully fabricated bare GO and rGO, and then, the rGO was decorated with silver (Ag) nanoparticles to develop the Ag-rGO composite. The as-prepared materials were characterized by various techniques, such as UV-visible (UV-vis) and Fourier transform infrared (FTIR) spectroscopies, X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and scanning electron microscopy (SEM) to elucidate their structure, morphology, and chemical composition. The pollutant removal performance of the as-prepared materials was evaluated through a batch approach under the effect of various experimental variables for removal of NB dye from wastewater. As obvious, the Ag-rGO composite revealed exceptional performance for NB dye removal from wastewater, with a maximum removal percentage of 94% within 60 min, which is remarkably higher than those of the rGO (i.e., 59%) and GO (i.e., 22%), under the same experimental conditions. The adsorption data was analyzed with thermodynamics, isotherms, and kinetics models to better understand the physicochemical mechanisms driving the effective removal of the NB dye. The results reveal that Ag-rGO nanocomposite exhibit excellent adsorption ability as well as favorable thermodynamic and kinetic parameters for NB dye removal. It was also found that the presence of light enhanced the adsorptive removal of NB while using Ag-rGO as an adsorbent. The present study noted significant reusability of the Ag-rGO nanocomposite, likely due to minimal Ag leaching and/or the robust stability of the Ag-rGO. It is suggested that Ag-rGO-based hybrid materials could serve as promising candidates for efficiently adsorbing and catalytically removing various toxic pollutants from wastewater.

2.
Mar Pollut Bull ; 203: 116415, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723552

RESUMEN

This study assessed the occurrence, origins, and potential risks of emerging perfluoroalkyl acids (PFAAs) for the first time in drinking water resources of Khyber Pakhtunkhwa, Pakistan. In total, 13 perfluoroalkyl carboxylic acids (PFCAs) with carbon (C) chains C4-C18 and 4 perfluoroalkyl sulfonates (PFSAs) with C chains C4-C10 were tested in both surface and ground drinking water samples using a high-performance liquid chromatography system (HPLC) equipped with an Agilent 6460 Triple Quadrupole liquid chromatography-mass spectrometry (LC-MS) system. The concentrations of ∑PFCAs, ∑PFSAs, and ∑PFAAs in drinking water ranged from 1.46 to 72.85, 0.30-8.03, and 1.76-80.88 ng/L, respectively. Perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) were the dominant analytes in surface water followed by ground water, while the concentration of perfluorobutane sulfonate (PFBS), perfluorooctanoic acid (PFOA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), and perfluorododecanoic acid (PFDoDA) were greater than long-chain PFOA and PFOS. The correlation statistics, which showed a strong correlation (p < 0.05) between the PFAA analytes, potentially indicated the fate of PFAAs in the area's drinking water sources, whereas the hierarchical cluster analysis (HCA) and principal component analysis (PCA) statistics identified industrial, domestic, agricultural, and commercial applications as potential point and non-point sources of PFAA contamination in the area. From risk perspectives, the overall PFAA toxicity in water resources was within the ecological health risk thresholds, where for the human population the hazard quotient (HQ) values of individual PFAAs were < 1, indicating no risk from the drinking water sources; however, the hazard index (HI) from the ∑PFAAs should not be underestimated, as it may significantly result in potential chronic toxicity to exposed adults, followed by children.

3.
Genome Med ; 16(1): 58, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637822

RESUMEN

BACKGROUND: Klebsiella pneumoniae is a major bacterial and opportunistic human pathogen, increasingly recognized as a healthcare burden globally. The convergence of resistance and virulence in K. pneumoniae strains has led to the formation of hypervirulent and multidrug-resistant strains with dual risk, limiting treatment options. K. pneumoniae clones are known to emerge locally and spread globally. Therefore, an understanding of the dynamics and evolution of the emerging strains in hospitals is warranted to prevent future outbreaks. METHODS: In this study, we conducted an in-depth genomic analysis on a large-scale collection of 328 multidrug-resistant (MDR) K. pneumoniae strains recovered from 239 patients from a single major hospital in the western coastal city of Jeddah in Saudi Arabia from 2014 through 2022. We employed a broad range of phylogenetic and phylodynamic methods to understand the evolution of the predominant clones on epidemiological time scales, virulence and resistance determinants, and their dynamics. We also integrated the genomic data with detailed electronic health record (EHR) data for the patients to understand the clinical implications of the resistance and virulence of different strains. RESULTS: We discovered a diverse population underlying the infections, with most strains belonging to Clonal Complex 14 (CC14) exhibiting dominance. Specifically, we observed the emergence and continuous expansion of strains belonging to the dominant ST2096 in the CC14 clade across hospital wards in recent years. These strains acquired resistance mutations against colistin and extended spectrum ß-lactamase (ESBL) and carbapenemase genes, namely blaOXA-48 and blaOXA-232, located on three distinct plasmids, on epidemiological time scales. Strains of ST2096 exhibited a high virulence level with the presence of the siderophore aerobactin (iuc) locus situated on the same mosaic plasmid as the ESBL gene. Integration of ST2096 with EHR data confirmed the significant link between colonization by ST2096 and the diagnosis of sepsis and elevated in-hospital mortality (p-value < 0.05). CONCLUSIONS: Overall, these results demonstrate the clinical significance of ST2096 clones and illustrate the rapid evolution of an emerging hypervirulent and MDR K. pneumoniae in a clinical setting.


Asunto(s)
Klebsiella pneumoniae , Klebsiella , Humanos , Klebsiella/genética , Centros de Atención Terciaria , Filogenia , Plásmidos/genética , beta-Lactamasas/genética , Antibacterianos
4.
Environ Monit Assess ; 196(5): 425, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573498

RESUMEN

The remediation of polluted soil and water stands as a paramount task in safeguarding environmental sustainability and ensuring a dependable water source. Biochar, celebrated for its capacity to enhance soil quality, stimulate plant growth, and adsorb a wide spectrum of contaminants, including organic and inorganic pollutants, within constructed wetlands, emerges as a promising solution. This review article is dedicated to examining the effects of biochar amendments on the efficiency of wastewater purification within constructed wetlands. This comprehensive review entails an extensive investigation of biochar's feedstock selection, production processes, characterization methods, and its application within constructed wetlands. It also encompasses an exploration of the design criteria necessary for the integration of biochar into constructed wetland systems. Moreover, a comprehensive analysis of recent research findings pertains to the role of biochar-based wetlands in the removal of both organic and inorganic pollutants. The principal objectives of this review are to provide novel and thorough perspectives on the conceptualization and implementation of biochar-based constructed wetlands for the treatment of organic and inorganic pollutants. Additionally, it seeks to identify potential directions for future research and application while addressing prevailing gaps in knowledge and limitations. Furthermore, the study delves into the potential limitations and risks associated with employing biochar in environmental remediation. Nevertheless, it is crucial to highlight that there is a significant paucity of data regarding the influence of biochar on the efficiency of wastewater treatment in constructed wetlands, with particular regard to its impact on the removal of both organic and inorganic pollutants.


Asunto(s)
Carbón Orgánico , Contaminantes Ambientales , Humedales , Monitoreo del Ambiente , Biodegradación Ambiental , Suelo , Agua
5.
Nanoscale ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682562

RESUMEN

Chemical and electrochemical Li-ion insertion in transition metal oxides, either via a phase transformation reaction (ions insert into specific crystallographic sites of the host lattice) or a solid solution insertion (ions distribute uniformly throughout the host lattice), enables high energy density electrochemical energy storage. Many phase transformation cathode materials, that undergo two-phase reactions, exhibit high theoretical capacities arising from multi-electron redox reactions. However, challenges in distortive phase transformations and uncontrolled phase nucleation, propagation, segregation, and co-existence continue to limit the energy density, (dis)charging rate performances, and cycling stability of available phase transformation cathode materials. Vanadium pentoxide (V2O5), a classical layered intercalation host material with high theoretical capacity, undergoes irreversible structural changes and capacity fading when intercalating more than one lithium ion per V2O5 unit in its thermodynamically stable phase. Here, we review recent synthetic strategies to alter the V-O connectivity, thereby alleviating distortive phase transformations and promoting solid solution-based Li-ion insertion in V2O5. We also summarize several widely accessible and classical molecular-based analytical tools that can provide local structural dynamics and phase transformation mechanism information on the lithiation of V2O5, including single-crystal X-ray diffraction, infrared and Raman spectroscopy, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopy.

6.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38675393

RESUMEN

SARS-CoV-2 infections, commonly referred to as COVID-19, remain a critical risk to both human life and global economies. Particularly, COVID-19 patients with weak immunity may suffer from different complications due to the bacterial co-infections/super-infections/secondary infections. Therefore, different variants of alternative antibacterial therapeutic agents are required to inhibit those infection-causing drug-resistant pathogenic bacteria. This study attempted to explore these bacterial pathogens and their inhibitors by using integrated statistical and bioinformatics approaches. By analyzing bacterial 16S rRNA sequence profiles, at first, we detected five bacterial genera and taxa (Bacteroides, Parabacteroides, Prevotella Clostridium, Atopobium, and Peptostreptococcus) based on differentially abundant bacteria between SARS-CoV-2 infection and control samples that are significantly enriched in 23 metabolic pathways. A total of 183 bacterial genes were found in the enriched pathways. Then, the top-ranked 10 bacterial genes (accB, ftsB, glyQ, hldD, lpxC, lptD, mlaA, ppsA, ppc, and tamB) were selected as the pathogenic bacterial key genes (bKGs) by their protein-protein interaction (PPI) network analysis. Then, we detected bKG-guided top-ranked eight drug molecules (Bemcentinib, Ledipasvir, Velpatasvir, Tirilazad, Acetyldigitoxin, Entreatinib, Digitoxin, and Elbasvir) by molecular docking. Finally, the binding stability of the top-ranked three drug molecules (Bemcentinib, Ledipasvir, and Velpatasvir) against three receptors (hldD, mlaA, and lptD) was investigated by computing their binding free energies with molecular dynamic (MD) simulation-based MM-PBSA techniques, respectively, and was found to be stable. Therefore, the findings of this study could be useful resources for developing a proper treatment plan against bacterial co-/super-/secondary-infection in SARS-CoV-2 infections.

7.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38675404

RESUMEN

Histone deacetylases (HDACs) are enzymes that remove acetyl groups from ɛ-amino of histone, and their involvement in the development and progression of cancer disorders makes them an interesting therapeutic target. This study seeks to discover new inhibitors that selectively inhibit HDAC enzymes which are linked to deadly disorders like T-cell lymphoma, childhood neuroblastoma, and colon cancer. MOE was used to dock libraries of ZINC database molecules within the catalytic active pocket of target HDACs. The top three hits were submitted to MD simulations ranked on binding affinities and well-occupied interaction mechanisms determined from molecular docking studies. Inside the catalytic active site of HDACs, the two stable inhibitors LIG1 and LIG2 affect the protein flexibility, as evidenced by RMSD, RMSF, Rg, and PCA. MD simulations of HDACs complexes revealed an alteration from extended to bent motional changes within loop regions. The structural deviation following superimposition shows flexibility via a visual inspection of movable loops at different timeframes. According to PCA, the activity of HDACs inhibitors induces structural dynamics that might potentially be utilized to define the nature of protein inhibition. The findings suggest that this study offers solid proof to investigate LIG1 and LIG2 as potential HDAC inhibitors.

8.
Trop Anim Health Prod ; 56(3): 105, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502249

RESUMEN

Buffaloes are considered animals of the future with the ability to survive under unfavorable conditions. However, the lack of access to superior germplasm poses a significant challenge to increasing buffalo production. Resveratrol has been shown to improve oocyte quality and developmental competence in various animals during in vitro embryo development. However, limited information is available on the use of resveratrol to improve the in vitro maturation and development competence of Nili Ravi buffalo oocytes. Therefore, the current study aimed to investigate the influence of different concentrations of resveratrol on the maturation, fertilization, and development of buffalo oocytes under in vitro conditions. Oocytes were collected from ovaries and subjected to in vitro maturation (IVM) using varying concentrations of resveratrol (0 µM, 0.5 µM, 1 µM, 1.5 µM, and 2 µM), and the maturation process was assessed using a fluorescent staining technique. Results indicated no significant differences in oocyte maturation, morula rate, and blastocyst rate among the various resveratrol concentrations. However, the cleavage rate notably increased with 1 µM and 1.5 µM concentrations of resveratrol (p < 0.05). In conclusion, the study suggests that adding 1 µM of resveratrol into the maturation media may enhance the cleavage and blastocyst hatching of oocytes of Nili Ravi buffaloes. These findings hold promise for advancing buffalo genetics, reproductive performance, and overall productivity, offering potential benefits to the dairy industry, especially in Asian countries.


Asunto(s)
Bison , Búfalos , Femenino , Animales , Resveratrol/farmacología , Fertilización In Vitro/veterinaria , Oocitos , Ovario
9.
Cureus ; 16(1): e52322, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38357062

RESUMEN

Background Rheumatic heart disease (RHD) is a chronic cardiovascular condition stemming from an infectious origin, posing a substantial health burden, particularly in economically disadvantaged regions. It starts with acute rheumatic fever (ARF), a complication following group A Streptococcus infection, leading to heart valve damage and, over time, structural heart abnormalities. RHD contributes to premature deaths, especially in low-middle-income countries. Although the incidence and prevalence have generally reduced globally due to antibiotics and improved healthcare, it remains a significant public health concern in Brazil, echoing its prevalence in many developing nations around the world. RHD stands as a poignant testament to the intersection of socio-economic disparities and healthcare challenges within Brazil's diverse population. In Brazil, despite advancements in healthcare, RHD continues to impact communities, highlighting the urgent need for enhanced prevention strategies, access to quality healthcare services, and heightened awareness to combat this preventable, yet persistent, cardiac condition. Understanding the epidemiological landscape and socio-cultural factors influencing RHD in Brazil is crucial for developing targeted interventions aimed at mitigating its burden on individuals, families, and the healthcare system at large. Thus, our study focuses on analyzing age-related mortality rates linked to ARF and chronic RHD (ARHD) in Brazil from 2000 to 2021, particularly examining gender disparities. Materials and methods This retrospective cohort study employed a descriptive time-series approach, utilizing comprehensive nationwide data from Brazil spanning from 2000 to 2021 to assess trends in diverse age groups, among both sexes, enabling a detailed analysis of temporal patterns. Mortality data, extracted and categorized meticulously, were subjected to Joinpoint statistical analyses enabling comparative assessments, with average annual percent change (AAPC) and annual percent change (APC) serving as key metrics to quantify and interpret trends over the analyzed period. Results The acute RHD (ARHD)-related mortality declined over the analyzed years supported by AAPC, with higher mortality reduction in females. The age-adjusted mortality rate for "males and females" decreased from 78 to 67 deaths/100,000 from 2000 to 2021. Female mortality dropped from 85 to 69/100,000, and male mortality decreased from 73 to 63/100,000 over the same period. For ARHD, male age groups (20-29, 60-69, 70-79, 80+) showed declining mortality, while the 30-59 age group exhibited an upward. Females AAMR for chronic RHD (CRHD) decreased across all age groups, with significant reductions in the 80 years and above age group from 2000-2002 (APC: -11.94*) and steadily from 2002 onwards (APC: -1.33). Conclusions Our study revealed an overall decline in mortality rates for both acute and CRHD across both sexes. Females consistently exhibited higher mortality rates and a more pronounced reduction compared to males in both acute and CRHD. In ARHD, males experience the highest mortality in the 50-59 age group, while females have a peak in the 40-49 age group. The 60-69 age group had the highest mortality in CRHD for both sexes. Conversely, the 20-29 age group displayed the lowest mortality in CRHD, and the 80-89 age group had the lowest mortality in ARHD.

10.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276007

RESUMEN

Potentilla nepalensis belongs to the Rosaceae family and has numerous therapeutic applications as potent plant-based medicine. Forty phytoconstituents (PCs) from the root and stem through n-hexane (NR and NS) and methanolic (MR and MS) extracts were identified in earlier studies. However, the PCs affecting human genes and their roles in the body have not previously been disclosed. In this study, we employed network pharmacology, molecular docking, molecular dynamics simulations (MDSs), and MMGBSA methodologies. The SMILES format of PCs from the PubChem was used as input to DIGEP-Pred, with 764 identified as the inducing genes. Their enrichment studies have shown inducing genes' gene ontology descriptions, involved pathways, associated diseases, and drugs. PPI networks constructed in String DB and network topological analyzing parameters performed in Cytoscape v3.10 revealed three therapeutic targets: TP53 from MS-, NR-, and NS-induced genes; HSPCB and Nf-kB1 from MR-induced genes. From 40 PCs, two PCs, 1b (MR) and 2a (MS), showed better binding scores (kcal/mol) with p53 protein of -8.6 and -8.0, and three PCs, 3a, (NR) 4a, and 4c (NS), with HSP protein of -9.6, -8.7, and -8.2. MDS and MMGBSA revealed these complexes are stable without higher deviations with better free energy values. Therapeutic targets identified in this study have a prominent role in numerous cancers. Thus, further investigations such as in vivo and in vitro studies should be carried out to find the molecular functions and interlaying mechanism of the identified therapeutic targets on numerous cancer cell lines in considering the PCs of P. nepalensis.

11.
J Biomol Struct Dyn ; : 1-30, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38059345

RESUMEN

This study presents a robust and integrated methodology that harnesses a range of computational techniques to facilitate the design and prediction of new inhibitors targeting the JAK3/STAT pathway. This methodology encompasses several strategies, including QSAR analysis, pharmacophore modeling, ADMET prediction, covalent docking, molecular dynamics (MD) simulations, and the calculation of binding free energies (MM/GBSA). An efficacious QSAR model was meticulously crafted through the employment of multiple linear regression (MLR). The initial MLR model underwent further refinement employing an artificial neural network (ANN) methodology aimed at minimizing predictive errors. Notably, both MLR and ANN exhibited commendable performance, showcasing R2 values of 0.89 and 0.95, respectively. The model's precision was assessed via leave-one-out cross-validation (CV) yielding a Q2 value of 0.65, supplemented by rigorous Y-randomization. , The pharmacophore model effectively differentiated between active and inactive drugs, identifying potential JAK3 inhibitors, and demonstrated validity with an ROC value of 0.86. The newly discovered and designed inhibitors exhibited high inhibitory potency, ranging from 6 to 8, as accurately predicted by the QSAR models. Comparative analysis with FDA-approved Tofacitinib revealed that the new compounds exhibited promising ADMET properties and strong covalent docking (CovDock) interactions. The stability of the new discovered and designed inhibitors within the JAK3 binding site was confirmed through 500 ns MD simulations, while MM/GBSA calculations supported their binding affinity. Additionally, a retrosynthetic study was conducted to facilitate the synthesis of these potential JAK3/STAT inhibitors. The overall integrated approach demonstrates the feasibility of designing novel JAK3/STAT inhibitors with robust efficacy and excellent ADMET characteristics that surpass Tofacitinib by a significant margin.Communicated by Ramaswamy H. Sarma.

12.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139868

RESUMEN

BACKGROUND: Advancements in nanoscience have led to a profound paradigm shift in the therapeutic applications of medicinally important natural drugs. The goal of this research is to develop a nano-natural product for efficient cancer treatment. METHODS AND RESULTS: For this purpose, mesoporous silica nanoparticles (MSNPs) were formulated, characterized, and loaded with caffeine to develop a targeted drug delivery system, i.e., caffeine-coated nanoparticles (CcNPs). In silico docking studies were conducted to examine the binding efficiency of the CcNPs with different apoptotic targets followed by in vitro and in vivo bioassays in respective animal models. Caffeine, administered both as a free drug and in nanomedicine form, along with doxorubicin, was delivered intravenously to a benzene-induced AML model. The anti-leukemic potential was assessed through hematological profiling, enzymatic biomarker analysis, and RT-PCR examination of genetic alterations in leukemia markers. Docking studies show strong inter-molecular interactions between CcNPs and apoptotic markers. In vitro analysis exhibits statistically significant antioxidant activity, whereas in vivo analysis exhibits normalization of the genetic expression of leukemia biomarkers STMN1 and S1009A, accompanied by the restoration of the hematological and morphological traits of leukemic blood cells in nanomedicine-treated rats. Likewise, a substantial improvement in hepatic and renal biomarkers is also observed. In addition to these findings, the nanomedicine successfully normalizes the elevated expression of GAPDH and mTOR induced by exposure to benzene. Further, the nanomedicine downregulates pro-survival components of the NF-kappa B pathway and upregulated P53 expression. Additionally, in the TRAIL pathway, it enhances the expression of pro-apoptotic players TRAIL and DR5 and downregulates the anti-apoptotic protein cFLIP. CONCLUSIONS: Our data suggest that MSNPs loaded with caffeine, i.e., CcNP/nanomedicine, can potentially inhibit transformed cell proliferation and induce pro-apoptotic TRAIL machinery to counter benzene-induced leukemia. These results render our nanomedicine as a potentially excellent therapeutic agent against AML.

13.
Molecules ; 28(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37894501

RESUMEN

Rapid industrialization and urbanization are the two significant issues causing environmental pollution. The polluted water from various industries contains refractory organic materials such as dyes. Heterogeneous photocatalysis using semiconductor metal oxides is an effective remediation technique for wastewater treatment. In this research, we used a co-precipitation-assisted hydrothermal method to synthesize a novel I-FeWO4/GO sunlight-active nanocomposite. Introducing dopant reductive iodine species improved the catalytic activity of FeWO4/GO. I- ions improved the catalytic performance of H2O2 by doping into FeWO4/GO composite. Due to I- doping and the introduction of graphene as a support medium, enhanced charge separation and transfer were observed, which is crucial for efficient heterogeneous surface reactions. Various techniques, like FTIR, SEM-EDX, XRD, and UV-Vis spectroscopy, were used to characterize composites. The Tauc plot method was used to calculate pristine and iodine-doped FeWO4/GO bandgap. Iodine doping reduced the bandgap from 2.8 eV to 2.6 eV. The degradation of methylene blue (MB) was evaluated by optimizing various parameters like catalyst concentration, oxidant dose, pH, and time. The optimum conditions for photocatalysts where maximum degradation occurred were pH = 7 for both FeWO4/GO and I-FeWO4/GO; oxidant dose = 9 mM and 7 mM for FeWO4/GO and I-FeWO4/GO; and catalyst concentration = 30 mg and 35 mg/100 mL for FeWO4/GO and I-FeWO4/GO; the optimum time was 120 min. Under these optimum conditions, FeWO4/GO and I-FeWO4/GO showed 92.0% and 97.0% degradation of MB dye.

14.
Artículo en Inglés | MEDLINE | ID: mdl-37800681

RESUMEN

In this study, ZnFe2O4-Polyaniline (PANI), ZnFe2O4-Polystyrene (PST), and ZnFe2O4-Polypyrrole (Ppy) nanocomposites were synthesized by the adsorption method and characterized by field emission scanning electron microscopy and Fourier transform infrared spectrometer. Batch adsorption experiments were conducted for removing two types of hazardous dyes Red X-GRL and Direct Sky Blue 51 from an aqueous solution and the effect of pH, adsorbent dosage, contact time, and initial concentration of dyes were investigated. Meanwhile, kinetic, isotherm, and thermodynamic parameters were also determined. The electrolyte and surfactant effect was also tested for the prepared nanocomposites. To test the reusability desorption study was also conducted.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Polímeros/química , Colorantes/química , Aguas Residuales , Pirroles/química , Poliestirenos , Nanocompuestos/química , Termodinámica , Adsorción , Cinética , Contaminantes Químicos del Agua/análisis
15.
Plants (Basel) ; 12(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37687319

RESUMEN

The demand for a better agricultural productivity and the available phosphorus (P) limitation in plants are prevailing worldwide. Poor P availability due to the high pH and calcareous nature of soils leads to a lower P fertilizer use efficiency of 10-25% in Pakistan. Among different technologies, the use of biologically acidified amendments could be a potential strategy to promote soil P availability and fertilizer use efficiency (FUE) in alkaline calcareous soils. However, this study hypothesized that an acidified amendment could lower soil pH and solubilize the insoluble soil P that plants can potentially uptake and use to improve their growth and development. For this purpose, the test plant Zea mays was planted in greenhouse pots with a recommended dose rate of 168 kg ha-1 of P for selected phosphatic fertilizers, viz., DAP (diammonium phosphate), SSP (single superphosphate), and RP (rock phosphate) with or without 2% of the acidified product and a phosphorus solubilizing Bacillus sp. MN54. The results showed that the integration of acidified amendments and PSB strain MN54 with P fertilizers improved P fertilizer use efficiency (FUE), growth, yield, and P uptake of Zea mays as compared to sole application of P fertilizers. Overall, organic material along with DAP significantly improved plant physiological-, biochemical-, and nutrition-related attributes over the sole application of DAP. Interestingly, the co-application of RP with the acidified product and MN54 showed a higher response than the sole application of DAP and SSP. However, based on our study findings, we concluded that using RP with organic amendments was a more economically and environmentally friendly approach compared to the most expensive DAP fertilizer. Taken together, the current study suggests that the use of this innovative new strategy could have the potential to improve FUE and soil P availability via pH manipulation, resulting in an improved crop productivity and quality/food security.

16.
Molecules ; 28(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37764352

RESUMEN

Marek's disease virus (MDV) is a highly contagious and persistent virus that causes T-lymphoma in chickens, posing a significant threat to the poultry industry despite the availability of vaccines. The emergence of new virulent strains has further intensified the challenge of designing effective antiviral drugs for MDV. In this study, our main objective was to identify novel antiviral phytochemicals through in silico analysis. We employed Alphafold to construct a three-dimensional (3D) structure of the MDV DNA polymerase, a crucial enzyme involved in viral replication. To ensure the accuracy of the structural model, we validated it using tools available at the SAVES server. Subsequently, a diverse dataset containing thousands of compounds, primarily derived from plant sources, was subjected to molecular docking with the MDV DNA polymerase model, utilizing AutoDock software V 4.2. Through comprehensive analysis of the docking results, we identified Disalicyloyl curcumin as a promising drug candidate that exhibited remarkable binding affinity, with a minimum energy of -12.66 Kcal/mol, specifically targeting the DNA polymerase enzyme. To further assess its potential, we performed molecular dynamics simulations, which confirmed the stability of Disalicyloyl curcumin within the MDV system. Experimental validation of its inhibitory activity in vitro can provide substantial support for its effectiveness. The outcomes of our study hold significant implications for the poultry industry, as the discovery of efficient antiviral phytochemicals against MDV could substantially mitigate the economic losses associated with this devastating disease.

17.
Mar Pollut Bull ; 195: 115460, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660661

RESUMEN

This study analyzed the levels of heavy metals bioaccumulation in commonly consumed riverine fish species, including G. cavia, T. macrolepis, G. gotyla, S. plagiostomus, and M. armatus from River Swat in Pakistan, and quantify their potential risk to children and adults in general and fisherfolk communities using multiple pollution and risk assessment approaches. The highest metal detected by inductive coupled plasma mass spectrometry (ICP-MS) was Zn, which ranged from 49.61 to 116.83 mg/kg, followed by Fe (19.25-101.33 mg/kg) > Mn (5.25-40.35 mg/kg) > Cr (3.05-14.59 mg/kg) > Ni (4.26-11.80 mg/kg) > Al (1.59-12.25 mg/kg) > Cu (1.24-8.59 mg/kg) > Pb (0.29-1.95 mg/kg) > Co (0.08-0.46 mg/kg) > Cd (0.01-0.29 mg/kg), demonstrating consistent fluctuation with the safe recommendations of global regulatory bodies. The average bioaccumulation factor (BAF) values in the examined fish species were high (BAF > 5000) for Pb, Zn, Mn, Cu, Cr, Ni, and Cd, bioaccumulate (1000 > BAF < 5000) for Co, and probable accumulative (BAF <1000) for Fe, and Al, while the overall ∑heavy metals pollution index (MPI) values were greater than one (MPI > 1) indicating sever heavy metals toxicity in G. cavia, followed by S. plagiostomus, M. armatus, G. gotyla, and T. macrolepis. The multivariate Pearson's correlation analysis identified the correlation coefficients between heavy metal pairs (NiCr, CuCr, PbCr, AlCo, CuNi, and PbNi), the hierarchical cluster analysis (CA) determined the origin by categorizing heavy metal accumulation into Cluster-A, Cluster-B, and Cluster-C, and the principal component analysis (PCA) discerned nearby weathering, mining, industrial, municipal, and agricultural activities as the potential sources of heavy metals bioaccumulation in riverine fish. As per human risk perspective, S.plagiostomus contributed significantly to the estimated daily intake (EDI) of heavy metals, followed by G.cavia > M.armatus > G.gotyla > T.macrolepis in dependent children and adults of the fisherfolk followed by the general population. The non-carcinogenic target hazard quotient (THQ) and hazard index (HI) values for heavy metal intake through fish exposure were < 1, while the carcinogenic risk (CR) for individual metal intake and the total carcinogenic risk (TCR) for cumulative Cr, Cd, and Pb intake were within the risk threshold of 10-6-10-4, suggesting an acceptable to high non-carcinogenic and carcinogenic risk for both children and adults in the fisherfolk, followed by the general population.


Asunto(s)
Cadmio , Metales Pesados , Adulto , Niño , Humanos , Animales , Cobayas , Cadmio/análisis , Ríos/química , Pakistán , Plomo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Medición de Riesgo , Peces
18.
Environ Sci Pollut Res Int ; 30(42): 96191-96207, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37563511

RESUMEN

ICTs and access to Internet use are considered vital for the achievement of sustainable development goals. So, this study explored the effect of the global digital divide, trade openness, renewable energy consumption, and forestation on greenhouse gas (GHG) emissions in 42 high-income countries (HICs) and high-middle-income (HMICs), low-income countries (LICs), and low-middle-income countries (LMICs) of Africa from 1990 to 2018. TheDumitrescu-Hurlin causality results confirmed a unidirectional causality from GHG emissions to the global digital divide (HICs and HMICs), global digital divide to GHG emissions (LICs), and GHG emission to trade openness (LICs and LMICs). Moreover, the long-run results of the autoregressive distributed lag (ARDL) model showed an increase in GHG due to an increase in the global digital divide in all three panels. Further, ARDL results showed reduced GHG emissions due to increased trade openness in LIC and LMICs, renewable energy consumption, and forestation in all three panels. Thus, to encounter pollution from Internet use, the government should start environment-friendly projects through public and private investment in smart and modern environment-friendly technology and reduce the taxes and tariffs on them. Moreover, the governments of African countries should create public awareness through print and electronic media for raising the forestation area.


Asunto(s)
Brecha Digital , Gases de Efecto Invernadero , Desarrollo Económico , Dióxido de Carbono/análisis , África , Renta , Energía Renovable
19.
Biosensors (Basel) ; 13(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37622863

RESUMEN

Biofilms are complex communities of microorganisms that can form on various surfaces, including medical devices, industrial equipment, and natural environments. The presence of biofilms can lead to a range of problems, including infections, reduced efficiency and failure of equipment, biofouling or spoilage, and environmental damage. As a result, there is a growing need for tools to measure and monitor levels of biofilms in various biomedical, pharmaceutical, and food processing settings. In recent years, electrochemical impedance sensing has emerged as a promising approach for real-time, non-destructive, and rapid monitoring of biofilms. This article sheds light on electrochemical sensing for measuring biofilms, including its high sensitivity, non-destructive nature, versatility, low cost, and real-time monitoring capabilities. We also discussed some electrochemical sensing applications for studying biofilms in medical, environmental, and industrial settings. This article also presents future perspectives for research that would lead to the creation of reliable, quick, easy-to-use biosensors mounted on unmanned aerial vehicles (UAVs), and unmanned ground vehicles (UGVs), utilizing artificial intelligence-based terminologies to detect biofilms.


Asunto(s)
Inteligencia Artificial , Incrustaciones Biológicas , Espectroscopía Dieléctrica , Biopelículas , Impedancia Eléctrica
20.
J Enzyme Inhib Med Chem ; 38(1): 2231170, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37470409

RESUMEN

This research study describes the development of new small molecules based on 2,4-thiazolidinedione (2,4-TZD) and their aldose reductase (AR) inhibitory activities. The synthesis of 17 new derivatives of 2,4-TZDs hybrids was feasible by incorporating two known bioactive scaffolds, benzothiazole heterocycle, and nitro phenacyl moiety. The most active hybrid (8b) was found to inhibit AR in a non-competitive manner (0.16 µM), as confirmed by kinetic studies and molecular docking simulations. Furthermore, the in vivo experiments demonstrated that compound 8b had a significant hypoglycaemic effect in mice with hyperglycaemia induced by streptozotocin. Fifty milligrams per kilogram dose of 8b produced a marked decrease in blood glucose concentration, and a lower dose of 5 mg/kg demonstrated a noticeable antihyperglycaemic effect. These outcomes suggested that compound 8b may be used as a promising therapeutic agent for the treatment of diabetic complications.


Asunto(s)
Aldehído Reductasa , Hipoglucemiantes , Animales , Ratones , Aldehído Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Hipoglucemiantes/farmacología , Cinética , Simulación del Acoplamiento Molecular , Tiazolidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...