Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167074, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354758

RESUMEN

For the advancement of DKD treatment, identifying unrecognized residual risk factors is essential. We explored the impact of obesity diversity derived from different carbohydrate qualities, with an emphasis on the increasing trend of excessive fructose consumption and its effect on DKD progression. In this study, we utilized db/db mice to establish a novel diabetic model characterized by fructose overconsumption, aiming to uncover the underlying mechanisms of renal damage. Compared to the control diet group, the fructose-fed db/db mice exhibited more pronounced obesity yet demonstrated milder glucose intolerance. Plasma cystatin C levels were elevated in the fructose model compared to the control, and this elevation was accompanied by enhanced glomerular sclerosis, even though albuminuria levels and tubular lesions were comparable. Single-cell RNA sequencing of the whole kidney highlighted an increase in Lrg1 in glomerular endothelial cells (GECs) in the fructose model, which appeared to drive mesangial fibrosis through enhanced TGF-ß1 signaling. Our findings suggest that excessive fructose intake exacerbates diabetic kidney disease progression, mediated by aberrant Lrg1-driven crosstalk between GECs and mesangial cells.


Asunto(s)
Nefropatías Diabéticas , Células Mesangiales , Ratones , Animales , Células Endoteliales/patología , Fructosa/efectos adversos , Nefropatías Diabéticas/patología , Ratones Endogámicos , Obesidad/complicaciones , Comunicación Celular
2.
Kidney360 ; 5(2): 320-326, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227425

RESUMEN

Ketone bodies have a negative image because of ketoacidosis, one of the acute and serious complications in diabetes. The negative image persists despite the fact that ketone bodies are physiologically produced in the liver and serve as an indispensable energy source in extrahepatic organs, particularly during long-term fasting. However, accumulating experimental evidence suggests that ketone bodies exert various health benefits. Particularly in the field of aging research, there is growing interest in the potential organoprotective effects of ketone bodies. In addition, ketone bodies have a potential role in preventing kidney diseases, including diabetic kidney disease (DKD), a diabetic complication caused by prolonged hyperglycemia that leads to a decline in kidney function. Ketone bodies may help alleviate the renal burden from hyperglycemia by being used as an alternative energy source in patients with diabetes. Furthermore, ketone body production may reduce inflammation and delay the progression of several kidney diseases in addition to DKD. Although there is still insufficient research on the use of ketone bodies as a treatment and their effects, their renoprotective effects are being gradually proven. This review outlines the ketone body-mediated renoprotective effects in DKD and other kidney diseases.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Nefropatías Diabéticas , Hiperglucemia , Cetosis , Humanos , Cuerpos Cetónicos/metabolismo , Cetosis/metabolismo
3.
Pharmacol Ther ; 254: 108590, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38286162

RESUMEN

The prevalence of chronic kidney disease (CKD) is increasing worldwide, making the disease an urgent clinical challenge. Caloric restriction has various anti-aging and organ-protective effects, and unraveling its molecular mechanisms may provide insight into the pathophysiology of CKD. In response to changes in nutritional status, intracellular nutrient signaling pathways show adaptive changes. When nutrients are abundant, signals such as mechanistic target of rapamycin complex 1 (mTORC1) are activated, driving cell proliferation and other processes. Conversely, others, such as sirtuins and AMP-activated protein kinase, are activated during energy scarcity, in an attempt to compensate. Autophagy, a cellular self-maintenance mechanism that is regulated by such signals, has also been reported to contribute to the progression of various kidney diseases. Furthermore, in recent years, ketone bodies, which have long been considered to be detrimental, have been reported to play a role as starvation signals, and thereby to have renoprotective effects, via the inhibition of mTORC1. Therefore, in this review, we discuss the role of mTORC1, which is one of the most extensively studied nutrient-related signals associated with kidney diseases, autophagy, and ketone body metabolism; and kidney energy metabolism as a novel therapeutic target for CKD.


Asunto(s)
Insuficiencia Renal Crónica , Transducción de Señal , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/farmacología , Transducción de Señal/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Riñón/metabolismo , Autofagia , Insuficiencia Renal Crónica/tratamiento farmacológico
4.
Biochem Biophys Rep ; 37: 101607, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38178924

RESUMEN

Renal artery stenosis-induced chronic renal ischemia is an important cause of renal dysfunction, especially in older adults, and its incidence is currently increasing. To elucidate the mechanisms underlying chronic renal hypoperfusion-induced kidney damage, we developed a novel mouse model of renal artery coiling-based chronic hypoperfusion-related kidney injury. This model exhibits decreased renal blood flow and function, atrophy, and parenchymal injury in the coiled kidney, along with compensatory hypertrophy in the non-coiled kidney, without chronic hypertension. The availability of this mouse model, which can develop renal ischemia without genetic modification, will enhance kidney disease research by serving as a new tool to investigate the effects of acquired factors (e.g., obesity and aging) and genetic factors on renal artery stenosis-related renal parenchymal damage.

5.
Physiology (Bethesda) ; 39(3): 0, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38260943

RESUMEN

The discovery of insulin approximately a century ago greatly improved the management of diabetes, including many of its life-threatening acute complications like ketoacidosis. This breakthrough saved many lives and extended the healthy lifespan of many patients with diabetes. However, there is still a negative perception of ketone bodies stemming from ketoacidosis. Originally, ketone bodies were thought of as a vital source of energy during fasting and exercise. Furthermore, in recent years, research on calorie restriction and its potential impact on extending healthy lifespans, as well as studies on ketone bodies, have gradually led to a reevaluation of the significance of ketone bodies in promoting longevity. Thus, in this review, we discuss the emerging and hidden roles of ketone bodies in various organs, including the heart, kidneys, skeletal muscles, and brain, as well as their potential impact on malignancies and lifespan.


Asunto(s)
Diabetes Mellitus , Cetosis , Humanos , Cuerpos Cetónicos , Longevidad , Corazón
6.
Aging Cell ; 22(6): e13833, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060184

RESUMEN

Accumulating evidence suggests health benefits of ketone bodies, and especially for longevity. However, the precise role of endogenous ketogenesis in mammalian life span, and the safety and efficacy of the long-term exogenous supplementation of ketone bodies remain unclear. In the present study, we show that a deficiency in endogenous ketogenesis, induced by whole-body Hmgcs2 deletion, shortens life span in mice, and that this is prevented by daily ketone body supplementation using a diet containing 1,3-butanediol, a precursor of ß-hydroxybutyrate. Furthermore, feeding the 1,3-butanediol-containing diet from early in life increases midlife mortality in normal mice, but in aged mice it extends life span and prevents the high mortality associated with atherosclerosis in ApoE-deficient mice. By contrast, an ad libitum low-carbohydrate ketogenic diet markedly increases mortality. In conclusion, endogenous ketogenesis affects mammalian survival, and ketone body supplementation may represent a double-edged sword with respect to survival, depending on the method of administration and health status.


Asunto(s)
Cuerpos Cetónicos , Longevidad , Ratones , Animales , Butileno Glicoles , Ácido 3-Hidroxibutírico , Mamíferos
7.
Biochem Biophys Res Commun ; 620: 15-20, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-35772212

RESUMEN

Lipoprotein lipase (LPL) is an enzyme that catalyzes the hydrolysis of circulating triglyceride and the transport of fatty acids into cells. Its activity is positively regulated by insulin, and insulin resistance is associated with low LPL activity and subsequent hypertriglyceridemia. The involvement of hypertriglyceridemia in chronic kidney disease (CKD) is still under the debate in a clinical setting. Therefore, we aimed to study the role of hypertriglyceridemia in the disease using mice with systemic or renal-specific LPL deficiency. Systemic LPL deficiency was characterized by hypertriglyceridemia, but not renal injury or dyslipidemia-related conditions, such as fatty liver. Furthermore, the LPL deficiency-induced hypertriglyceridemia was not associated with a worsening of the CKD phenotype or atherosclerosis, even when CKD was induced by 5/6 nephrectomy. Next, because LPL-mediated fatty acid uptake may be important for energy metabolism in proximal tubular epithelial cells (PTECs), the role of renal LPL in renal physiology was studied by generating mice lacking LPL specifically in PTECs. These mice showed no abnormalities in their histology or renal reabsorption of micro molecules. These findings suggest that systemic and renal lipid abnormalities caused by LPL deficiency do not cause or worsen the development of renal injury, and provide novel insight regarding the potential role of lipotoxicity in the pathogenesis of obesity-related kidney injury.


Asunto(s)
Hiperlipoproteinemia Tipo I , Hipertrigliceridemia , Insuficiencia Renal Crónica , Animales , Riñón/metabolismo , Lipoproteína Lipasa/metabolismo , Ratones , Insuficiencia Renal Crónica/etiología , Triglicéridos/metabolismo
8.
Intern Med ; 61(20): 3077-3081, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35283375

RESUMEN

Fabry disease is an inherited lysosomal disorder caused by mutations in the alpha-galactosidase A gene. We herein report a Fabry disease patient with enzyme replacement therapy (ERT)-resistant proteinuria who showed improvement in the estimated glomerular filtration rate (eGFR) decline rate after uric acid (UA)-lowering therapy. The patient was diagnosed with Fabry disease at 36 years old. After that, even under ERT, proteinuria and eGFR decline persisted. During the clinical course, serum UA levels were elevated with increases in renal tubular damage markers. Febuxostat administration immediately improved tubular damage and prevented further eGFR decline. UA-mediated tubulopathy may become an additional therapeutic target for eGFR decline in Fabry disease.


Asunto(s)
Enfermedad de Fabry , Hiperuricemia , Adulto , Terapia de Reemplazo Enzimático , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/tratamiento farmacológico , Febuxostat/uso terapéutico , Tasa de Filtración Glomerular , Humanos , Hiperuricemia/tratamiento farmacológico , Proteinuria/tratamiento farmacológico , Proteinuria/etiología , Resultado del Tratamiento , Ácido Úrico , alfa-Galactosidasa/genética , alfa-Galactosidasa/uso terapéutico
9.
Biochim Biophys Acta Mol Basis Dis ; 1868(5): 166368, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35202791

RESUMEN

AIMS: Identifying the mechanisms that underlie progression from endothelial damage to podocyte damage, which leads to massive proteinuria, is an urgent issue that must be clarified to improve renal outcome in diabetic kidney disease (DKD). We aimed to examine the role of dynamin-related protein 1 (Drp1)-mediated regulation of mitochondrial fission in podocytes in the pathogenesis of massive proteinuria in DKD. METHODS: Diabetes- or albuminuria-associated changes in mitochondrial morphology in podocytes were examined by electron microscopy. The effects of albumin and other diabetes-related stimuli, including high glucose (HG), on mitochondrial morphology were examined in cultured podocytes. The role of Drp1 in podocyte damage was examined using diabetic podocyte-specific Drp1-deficient mice treated with neuraminidase, which removes endothelial glycocalyx. RESULTS: Neuraminidase-induced removal of glomerular endothelial glycocalyx in nondiabetic mice led to microalbuminuria without podocyte damage, accompanied by reduced Drp1 expression and mitochondrial elongation in podocytes. In contrast, streptozotocin-induced diabetes significantly exacerbated neuraminidase-induced podocyte damage and albuminuria, and was accompanied by increased Drp1 expression and enhanced mitochondrial fission in podocytes. Cell culture experiments showed that albumin stimulation decreased Drp1 expression and elongated mitochondria, although HG inhibited albumin-associated changes in mitochondrial dynamics, resulting in apoptosis. Podocyte-specific Drp1-deficiency in mice prevented diabetes-related exacerbation of podocyte damage and neuraminidase-induced development of albuminuria. Endothelial dysfunction-induced albumin exposure is cytotoxic to podocytes. Inhibition of mitochondrial fission in podocytes is a cytoprotective mechanism against albumin stimulation, which is impaired under diabetic condition. Inhibition of mitochondrial fission in podocytes may represent a new therapeutic strategy for massive proteinuria in DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Podocitos , Albúminas/metabolismo , Albúminas/farmacología , Albuminuria/genética , Albuminuria/metabolismo , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/patología , Femenino , Humanos , Masculino , Ratones , Dinámicas Mitocondriales , Neuraminidasa/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo , Proteinuria/patología
10.
J Biol Chem ; 296: 100761, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33971198

RESUMEN

Diabetes mellitus (DM) causes injury to tissues and organs, including to the heart and kidney, resulting in increased morbidity and mortality. Thus, novel potential therapeutics are continuously required to minimize DM-related organ damage. We have previously shown that dipeptidyl peptidase III (DPPIII) has beneficial roles in a hypertensive mouse model, but it is unknown whether DPPIII has any effects on DM. In this study, we found that intravenous administration of recombinant DPPIII in diabetic db/db mice for 8 weeks suppressed the DM-induced cardiac diastolic dysfunctions and renal injury without alteration of the blood glucose level. This treatment inhibited inflammatory cell infiltration and fibrosis in the heart and blocked the increase in albuminuria by attenuating the disruption of the glomerular microvasculature and inhibiting the effacement of podocyte foot processes in the kidney. The beneficial role of DPPIII was, at least in part, mediated by the cleavage of a cytotoxic peptide, named Peptide 2, which was increased in db/db mice compared with normal mice. This peptide consisted of nine amino acids, was a digested fragment of complement component 3 (C3), and had an anaphylatoxin-like effect determined by the Miles assay and chemoattractant analysis. The effect was dependent on its interaction with the C3a receptor and protein kinase C-mediated RhoA activation downstream of the receptor in endothelial cells. In conclusion, DPPIII plays a protective role in the heart and kidney in a DM animal model through cleavage of a peptide that is a part of C3.


Asunto(s)
Cardiomiopatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/uso terapéutico , Corazón/efectos de los fármacos , Riñón/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Animales , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/fisiopatología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Terapia Enzimática , Corazón/fisiopatología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Riñón/metabolismo , Riñón/fisiopatología , Masculino , Ratones Endogámicos C57BL , Sustancias Protectoras/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico
11.
Antioxidants (Basel) ; 10(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671526

RESUMEN

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and the number of patients affected is increasing worldwide. Thus, there is a need to establish a new treatment for DKD to improve the renal prognosis of diabetic patients. Recently, it has shown that intracellular metabolic abnormalities are involved in the pathogenesis of DKD. In particular, the activity of mechanistic target of rapamycin complex 1 (mTORC1), a nutrient-sensing signaling molecule, is hyperactivated in various organs of diabetic patients, which suggests the involvement of excessive mTORC1 activation in the pathogenesis of diabetes. In DKD, hyperactivated mTORC1 may be involved in the pathogenesis of podocyte damage, which causes proteinuria, and tubular cell injury that decreases renal function. Therefore, elucidating the role of mTORC1 in DKD and developing new therapeutic agents that suppress mTORC1 hyperactivity may shed new light on DKD treatments in the future.

12.
J Am Soc Nephrol ; 32(3): 563-579, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33514561

RESUMEN

BACKGROUND: Previous research demonstrated that small Rho GTPases, modulators of the actin cytoskeleton, are drivers of podocyte foot-process effacement in glomerular diseases, such as FSGS. However, a comprehensive understanding of the regulatory networks of small Rho GTPases in podocytes is lacking. METHODS: We conducted an analysis of podocyte transcriptome and proteome datasets for Rho GTPases; mapped in vivo, podocyte-specific Rho GTPase affinity networks; and examined conditional knockout mice and murine disease models targeting Srgap1. To evaluate podocyte foot-process morphology, we used super-resolution microscopy and electron microscopy; in situ proximity ligation assays were used to determine the subcellular localization of the small GTPase-activating protein SRGAP1. We performed functional analysis of CRISPR/Cas9-generated SRGAP1 knockout podocytes in two-dimensional and three-dimensional cultures and quantitative interaction proteomics. RESULTS: We demonstrated SRGAP1 localization to podocyte foot processes in vivo and to cellular protrusions in vitro. Srgap1fl/fl*Six2Cre but not Srgap1fl/fl*hNPHS2Cre knockout mice developed an FSGS-like phenotype at adulthood. Podocyte-specific deletion of Srgap1 by hNPHS2Cre resulted in increased susceptibility to doxorubicin-induced nephropathy. Detailed analysis demonstrated significant effacement of podocyte foot processes. Furthermore, SRGAP1-knockout podocytes showed excessive protrusion formation and disinhibition of the small Rho GTPase machinery in vitro. Evaluation of a SRGAP1-dependent interactome revealed the involvement of SRGAP1 with protrusive and contractile actin networks. Analysis of glomerular biopsy specimens translated these findings toward human disease by displaying a pronounced redistribution of SRGAP1 in FSGS. CONCLUSIONS: SRGAP1, a podocyte-specific RhoGAP, controls podocyte foot-process architecture by limiting the activity of protrusive, branched actin networks. Therefore, elucidating the complex regulatory small Rho GTPase affinity network points to novel targets for potentially precise intervention in glomerular diseases.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Podocitos/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Actomiosina/metabolismo , Animales , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/ultraestructura , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Proteínas Activadoras de GTPasa/deficiencia , Proteínas Activadoras de GTPasa/genética , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Síndrome Nefrótico/etiología , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Podocitos/ultraestructura , Mapeo de Interacción de Proteínas , Proteoma , Seudópodos/metabolismo , Seudópodos/ultraestructura , Transcriptoma
13.
Cell Metab ; 32(3): 404-419.e6, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32726607

RESUMEN

SGLT2 inhibitors offer strong renoprotection in subjects with diabetic kidney disease (DKD). But the mechanism for such protection is not clear. Here, we report that in damaged proximal tubules of high-fat diet-fed ApoE-knockout mice, a model of non-proteinuric DKD, ATP production shifted from lipolysis to ketolysis dependent due to hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1). We further found that empagliflozin raised endogenous ketone body (KB) levels, and thus its use or treatment with 1,3-butanediol, a KB precursor, prevented decreases in renal ATP levels and organ damage in the mice. The renoprotective effect of empagliflozin was abolished by gene deletion of Hmgcs2, a rate-limiting enzyme of ketogenesis. Furthermore, KBs attenuated mTORC1-associated podocyte damage and proteinuria in diabetic db/db mice. Our findings show that SGLT2 inhibition-associated renoprotection is mediated by an elevation of KBs that in turn corrects mTORC1 hyperactivation that occurs in non-proteinuric and proteinuric DKD.


Asunto(s)
Nefropatías Diabéticas/prevención & control , Cuerpos Cetónicos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo , Animales , Nefropatías Diabéticas/metabolismo , Femenino , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE
14.
CEN Case Rep ; 9(3): 266-270, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32270448

RESUMEN

A 43-year-old male patient on maintenance hemodialysis had an enhanced computed tomography scan examination with iohexol for the first time 10 min before regular hemodialysis therapy. At the start of hemodialysis, no symptoms were observed, and the platelet count was 148,000/µl. Approximately 1 h after starting hemodialysis, dyspnea and chest discomfort appeared. Since oxygen saturation of the peripheral artery decreased to 87%, oxygen administration was immediately started while continuing hemodialysis therapy. Furthermore, gingival hemorrhage was observed, and the platelet count decreased to 5000/µl. We were carefully monitoring his conditions while continuing hemodialysis and oxygen administration, but no further deterioration was observed. Thereafter, these symptoms and severe thrombocytopenia gradually improved without additional treatment. At the end of hemodialysis, these symptoms completely disappeared. As well, the platelet count recovered to 35,000/µl at the end of hemodialysis and increased to 92,000/µl the next morning. From the clinical course, we diagnosed with contrast medium-induced thrombocytopenia. Acute thrombocytopenia is a rare complication induced by the contrast medium. Until now, 16 cases on contrast medium-induced thrombocytopenia have been reported. Our case spontaneously recovered from severe thrombocytopenia relatively earlier than previous reports. Our patient started hemodialysis therapy 10 min after an enhanced computed tomography examination. Early removal of contrast medium by hemodialysis might be associated with early improvement. We should acknowledge that contrast media have potential to induce severe thrombocytopenia, even in patients on maintenance hemodialysis.


Asunto(s)
Medios de Contraste/efectos adversos , Yohexol/efectos adversos , Diálisis Renal/métodos , Trombocitopenia/inducido químicamente , Enfermedad Aguda , Adulto , Anciano , Pueblo Asiatico/etnología , Medios de Contraste/administración & dosificación , Disnea/etiología , Femenino , Hemorragia Gingival/etiología , Humanos , Hipoxia/diagnóstico , Hipoxia/terapia , Yohexol/administración & dosificación , Masculino , Persona de Mediana Edad , Terapia por Inhalación de Oxígeno/métodos , Recuento de Plaquetas/estadística & datos numéricos , Diálisis Renal/estadística & datos numéricos , Trombocitopenia/diagnóstico , Tomografía Computarizada por Rayos X
15.
Biochem Biophys Res Commun ; 525(2): 319-325, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32089264

RESUMEN

To examine the cell-protective role of podocyte autophagy against glomerular endothelial dysfunction in diabetes, we analyzed the renal phenotype of tamoxifen (TM)-inducible podocyte-specific Atg5-deficient (iPodo-Atg5-/-) mice with experimental endothelial dysfunction. In both control and iPodo-Atg5-/- mice, high fat diet (HFD) feeding induced glomerular endothelial damage characterized by decreased urinary nitric oxide (NO) excretion, collapsed endothelial fenestrae, and reduced endothelial glycocalyx. HFD-fed control mice showed slight albuminuria and nearly normal podocyte morphology. In contrast, HFD-fed iPodo-Atg5-/- mice developed massive albuminuria accompanied by severe podocyte injury that was observed predominantly in podocytes adjacent to damaged endothelial cells by scanning electron microscopy. Although podocyte-specific autophagy deficiency did not affect endothelial NO synthase deficiency-associated albuminuria, it markedly exacerbated albuminuria and severe podocyte morphological damage when the damage was induced by intravenous neuraminidase injection to remove glycocalyx from the endothelial surface. Furthermore, endoplasmic reticulum stress was accelerated in podocytes of iPodo-Atg5-/- mice stimulated with neuraminidase, and treatment with molecular chaperone tauroursodeoxycholic acid improved neuraminidase-induced severe albuminuria and podocyte injury. In conclusion, podocyte autophagy plays a renoprotective role against diabetes-related structural endothelial damage, providing an additional insight into the pathogenesis of massive proteinuria in diabetic nephropathy.


Asunto(s)
Autofagia/fisiología , Diabetes Mellitus Experimental/patología , Células Endoteliales/patología , Glomérulos Renales/patología , Podocitos/patología , Albuminuria/etiología , Animales , Proteína 5 Relacionada con la Autofagia/deficiencia , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/complicaciones , Dieta Alta en Grasa , Ratones , Proteinuria/etiología
16.
J Am Soc Nephrol ; 30(6): 962-978, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31043434

RESUMEN

BACKGROUND: Energy metabolism in proximal tubular epithelial cells (PTECs) is unique, because ATP production largely depends on lipolysis in both the fed and fasting states. Furthermore, disruption of renal lipolysis is involved in the pathogenesis of diabetic tubulopathy. Emerging evidence suggests that protein O-GlcNAcylation, an intracellular nutrient-sensing system, may regulate a number of metabolic pathways according to changes in nutritional status. Although O-GlcNAcylation in PTECs has been demonstrated experimentally, its precise role in lipolysis in PTECs is unclear. METHODS: To investigate the mechanism of renal lipolysis in PTECs-specifically, the role played by protein O-GlcNAcylation-we generated mice with PTECs deficient in O-GlcNAc transferase (Ogt). We analyzed their renal phenotypes during ad libitum feeding, after prolonged fasting, and after mice were fed a high-fat diet for 16 weeks to induce obesity and diabetes. RESULTS: Although PTEC-specific Ogt-deficient mice lacked a marked renal phenotype during ad libitum feeding, after fasting 48 hours, they developed Fanconi syndrome-like abnormalities, PTEC apoptosis, and lower rates of renal lipolysis and ATP production. Proteomic analysis suggested that farnesoid X receptor-dependent upregulation of carboxylesterase-1 is involved in O-GlcNAcylation's regulation of lipolysis in fasted PTECs. PTEC-specific Ogt-deficient mice with diabetes induced by a high-fat diet developed severe tubular cell damage and enhanced lipotoxicity. CONCLUSIONS: Protein O-GlcNAcylation is essential for renal lipolysis during prolonged fasting and offers PTECs significant protection against lipotoxicity in diabetes.


Asunto(s)
Regulación de la Expresión Génica , Túbulos Renales Proximales/metabolismo , Metabolismo de los Lípidos/genética , Lipólisis/genética , N-Acetilglucosaminiltransferasas/genética , Animales , Apoptosis/genética , Células Cultivadas , Diabetes Mellitus Experimental , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Ayuno , Homeostasis/genética , Túbulos Renales Proximales/citología , Masculino , Ratones , Ratones Noqueados , N-Acetilglucosaminiltransferasas/metabolismo , Proteómica , Distribución Aleatoria , Valores de Referencia
17.
Dev Cell ; 47(6): 741-757.e8, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30503751

RESUMEN

Podocytes, highly specialized epithelial cells, build the outer part of the kidney filtration barrier and withstand high mechanical forces through a complex network of cellular protrusions. Here, we show that Arp2/3-dependent actin polymerization controls actomyosin contractility and focal adhesion maturation of podocyte protrusions and thereby regulates formation, maintenance, and capacity to adapt to mechanical requirements of the filtration barrier. We find that N-WASP-Arp2/3 define the development of complex arborized podocyte protrusions in vitro and in vivo. Loss of dendritic actin networks results in a pronounced activation of the actomyosin cytoskeleton and the generation of over-maturated but less efficient adhesion, leading to detachment of podocytes. Our data provide a model to explain podocyte protrusion morphology and their mechanical stability based on a tripartite relationship between actin polymerization, contractility, and adhesion.


Asunto(s)
Proteína 3 Relacionada con la Actina/fisiología , Barrera de Filtración Glomerular/fisiología , Podocitos/fisiología , Citoesqueleto de Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animales , Adhesión Celular , Adhesiones Focales/metabolismo , Barrera de Filtración Glomerular/metabolismo , Humanos , Riñón/metabolismo , Riñón/fisiología , Ratones , Ratones Noqueados , Podocitos/metabolismo , Transducción de Señal , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
18.
PLoS One ; 13(7): e0200487, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30001384

RESUMEN

Podocytes are highly-specialized epithelial cells essentially required for the generation and the maintenance of the kidney filtration barrier. This elementary function is directly based on an elaborated cytoskeletal apparatus establishing a complex network of primary and secondary processes. Here, we identify the actin-bundling protein allograft-inflammatory-inhibitor 1 like (AIF1L) as a selectively expressed podocyte protein in vivo. We describe the distinct subcellular localization of AIF1L to actin stress fibers, focal adhesion complexes and the nuclear compartment of podocytes in vitro. Genetic deletion of AIF1L in immortalized human podocytes resulted in an increased formation of filopodial extensions and decreased actomyosin contractility. By the use of SILAC based quantitative proteomics analysis we describe the podocyte specific AIF1L interactome and identify several components of the actomyosin machinery such as MYL9 and UNC45A as potential AIF1L interaction partners. Together, these findings indicate an involvement of AIF1L in the stabilization of podocyte morphology by titrating actomyosin contractility and membrane dynamics.


Asunto(s)
Actomiosina/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Microfilamentos/metabolismo , Podocitos/metabolismo , Seudópodos/metabolismo , Células Cultivadas , Adhesiones Focales/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Podocitos/citología , Fibras de Estrés/metabolismo
19.
Aging Cell ; 17(4): e12796, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29943496

RESUMEN

Extending healthy lifespan is an emerging issue in an aging society. This study was designed to identify a dietary method of extending lifespan, promoting renoprotection, and preventing muscle weakness in aged mice, with a focus on the importance of the balance between dietary essential (EAAs) and nonessential amino acids (NEAAs) on the dietary restriction (DR)-induced antiaging effect. Groups of aged mice were fed ad libitum, a simple DR, or a DR with recovering NEAAs or EAAs. Simple DR significantly extended lifespan and ameliorated age-related kidney injury; however, the beneficial effects of DR were canceled by recovering dietary EAA but not NEAA. Simple DR prevented the age-dependent decrease in slow-twitch muscle fiber function but reduced absolute fast-twitch muscle fiber function. DR-induced fast-twitch muscle fiber dysfunction was improved by recovering either dietary NEAAs or EAAs. In the ad libitum-fed and the DR plus EAA groups, the renal content of methionine, an EAA, was significantly higher, accompanied by lower renal production of hydrogen sulfide (H2 S), an endogenous antioxidant. Finally, removal of methionine from the dietary EAA supplement diminished the adverse effects of dietary EAA on lifespan and kidney injury in the diet-restricted aged mice, which were accompanied by a recovery in H2 S production capacity and lower oxidative stress. These data imply that a dietary approach could combat kidney aging and prolong lifespan, while preventing muscle weakness, and suggest that renal methionine metabolism and the trans-sulfuration pathway could be therapeutic targets for preventing kidney aging and subsequently promoting healthy aging.


Asunto(s)
Envejecimiento/metabolismo , Aminoácidos/administración & dosificación , Aminoácidos/metabolismo , Restricción Calórica , Riñón/fisiología , Longevidad/fisiología , Fibras Musculares Esqueléticas/metabolismo , Debilidad Muscular , Animales , Suplementos Dietéticos , Riñón/efectos de los fármacos , Longevidad/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos
20.
Proc Natl Acad Sci U S A ; 114(23): E4621-E4630, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28536193

RESUMEN

Podocytes form the outer part of the glomerular filter, where they have to withstand enormous transcapillary filtration forces driving glomerular filtration. Detachment of podocytes from the glomerular basement membrane precedes most glomerular diseases. However, little is known about the regulation of podocyte adhesion in vivo. Thus, we systematically screened for podocyte-specific focal adhesome (FA) components, using genetic reporter models in combination with iTRAQ-based mass spectrometry. This approach led to the identification of FERM domain protein EPB41L5 as a highly enriched podocyte-specific FA component in vivo. Genetic deletion of Epb41l5 resulted in severe proteinuria, detachment of podocytes, and development of focal segmental glomerulosclerosis. Remarkably, by binding and recruiting the RhoGEF ARGHEF18 to the leading edge, EPB41L5 directly controls actomyosin contractility and subsequent maturation of focal adhesions, cell spreading, and migration. Furthermore, EPB41L5 controls matrix-dependent outside-in signaling by regulating the focal adhesome composition. Thus, by linking extracellular matrix sensing and signaling, focal adhesion maturation, and actomyosin activation EPB41L5 ensures the mechanical stability required for podocytes at the kidney filtration barrier. Finally, a diminution of EPB41L5-dependent signaling programs appears to be a common theme of podocyte disease, and therefore offers unexpected interventional therapeutic strategies to prevent podocyte loss and kidney disease progression.


Asunto(s)
Actomiosina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Adhesiones Focales/metabolismo , Proteínas de la Membrana/metabolismo , Podocitos/metabolismo , Animales , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Femenino , Adhesiones Focales/patología , Técnicas de Inactivación de Genes , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Síndrome Nefrótico/etiología , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Podocitos/patología , Embarazo , Proteómica , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...