Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(19): 21730-21738, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32314567

RESUMEN

The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu(In,Ga)Se2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces between the (Sb4Se6)n ribbons are disrupted. Here, it is shown that non-radiative recombination is suppressed even for grain boundaries cutting across the (Sb4Se6)n ribbons. This is due to a remarkable self-healing process, whereby atoms at the grain boundary can relax to remove any electronic defect states within the band gap. Grain boundaries can, however, impede charge transport due to the fact that carriers have a higher mobility along the (Sb4Se6)n ribbons. Because of the ribbon misorientation, certain grain boundaries can effectively block charge collection. Furthermore, it is shown that CdS is not a suitable emitter to partner Sb2Se3 due to Sb and Se interdiffusion. As a result, a highly defective Sb2Se3 interfacial layer is formed that potentially reduces device efficiency through interface recombination.

2.
ACS Appl Mater Interfaces ; 11(30): 27033-27047, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31276370

RESUMEN

The earth-abundant semiconductor Cu3BiS3 (CBS) exhibits promising photovoltaic properties and is often considered analogous to the solar absorbers copper indium gallium diselenide (CIGS) and copper zinc tin sulfide (CZTS) despite few device reports. The extent to which this is justifiable is explored via a thorough X-ray photoemission spectroscopy (XPS) analysis: spanning core levels, ionization potential, work function, surface contamination, cleaning, band alignment, and valence-band density of states. The XPS analysis overcomes and addresses the shortcomings of prior XPS studies of this material. Temperature-dependent absorption spectra determine a 1.2 eV direct band gap at room temperature; the widely reported 1.4-1.5 eV band gap is attributed to weak transitions from the low density of states of the topmost valence band previously being undetected. Density functional theory HSE06 + SOC calculations determine the band structure, optical transitions, and well-fitted absorption and Raman spectra. Valence band XPS spectra and model calculations find the CBS bonding to be superficially similar to CIGS and CZTS, but the Bi3+ cations (and formally occupied Bi 6s orbital) have fundamental impacts: giving a low ionization potential (4.98 eV), suggesting that the CdS window layer favored for CIGS and CZTS gives detrimental band alignment and should be rejected in favor of a better aligned material in order for CBS devices to progress.

3.
ACS Appl Mater Interfaces ; 10(4): 3750-3760, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29345454

RESUMEN

In this manuscript, the inorganic perovskite CsPbI2Br is investigated as a photovoltaic material that offers higher stability than the organic-inorganic hybrid perovskite materials. It is demonstrated that CsPbI2Br does not irreversibly degrade to its component salts as in the case of methylammonium lead iodide but instead is induced (by water vapor) to transform from its metastable brown cubic (1.92 eV band gap) phase to a yellow phase having a higher band gap (2.85 eV). This is easily reversed by heating to 350 °C in a dry environment. Similarly, exposure of unencapsulated photovoltaic devices to water vapor causes current (JSC) loss as the absorber transforms to its more transparent (yellow) form, but this is also reversible by moderate heating, with over 100% recovery of the original device performance. NMR and thermal analysis show that the high band gap yellow phase does not contain detectable levels of water, implying that water induces the transformation but is not incorporated as a major component. Performances of devices with best efficiencies of 9.08% (VOC = 1.05 V, JSC = 12.7 mA cm-2 and FF = 68.4%) using a device structure comprising glass/ITO/c-TiO2/CsPbI2Br/Spiro-OMeTAD/Au are presented, and further results demonstrating the dependence of the performance on the preparation temperature of the solution processed CsPbI2Br films are shown. We conclude that encapsulation of CsPbI2Br to exclude water vapor should be sufficient to stabilize the cubic brown phase, making the material of interest for use in practical PV devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA