Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Blood ; 140(20): 2154-2169, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-35981497

RESUMEN

Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies, but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA sequencing to investigate the transcriptome of mouse brain endothelial cells with an inducible endothelial-specific Ccm3 knock-out (Ccm3-iECKO). We found that Ccm3-deficient brain endothelial cells had a higher expression of genes related to the coagulation cascade and hypoxia when compared with wild-type brain endothelial cells. Immunofluorescent assays identified key molecular signatures of thrombi such as fibrin, von Willebrand factor, and activated platelets in Ccm3-iECKO mice and human CCM biopsies. Notably, we identified polyhedrocytes in Ccm3-iECKO mice and human CCM biopsies and report it for the first time. We also found that the parenchyma surrounding CCM lesions is hypoxic and that more thrombi correlate with higher levels of hypoxia. We created an in vitro model to study CCM pathology and found that human brain endothelial cells deficient for CCM3 expressed elevated levels of plasminogen activator inhibitor-1 and had a redistribution of von Willebrand factor. With transcriptomics, comprehensive imaging, and an in vitro CCM preclinical model, this study provides experimental evidence that genes and proteins related to the coagulation cascade affect the brain vasculature and promote neurological side effects such as hypoxia in CCMs. This study supports the concept that antithrombotic therapy may be beneficial for patients with CCM.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Animales , Ratones , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Células Endoteliales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Tromboinflamación , Factor de von Willebrand/metabolismo , Hipoxia/metabolismo
3.
Cell Mol Life Sci ; 79(4): 206, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35333979

RESUMEN

Cerebral Cavernous Malformation (CCM) is a brain vascular disease with various neurological symptoms. In this study, we describe the inflammatory profile in CCM and show for the first time the formation of neutrophil extracellular traps (NETs) in rodents and humans with CCM. Through RNA-seq analysis of cerebellum endothelial cells from wild-type mice and mice with an endothelial cell-specific ablation of the Ccm3 gene (Ccm3iECKO), we show that endothelial cells from Ccm3iECKO mice have an increased expression of inflammation-related genes. These genes encode proinflammatory cytokines and chemokines, as well as adhesion molecules, which promote recruitment of inflammatory and immune cells. Similarly, immunoassays showed elevated levels of these cytokines and chemokines in the cerebellum of the Ccm3iECKO mice. Consistently, both flow cytometry and immunofluorescence analysis showed infiltration of different subsets of leukocytes into the CCM lesions. Neutrophils, which are known to fight against infection through different strategies, including the formation of NETs, represented the leukocyte subset within the most pronounced increase in CCM. Here, we detected elevated levels of NETs in the blood and the deposition of NETs in the cerebral cavernomas of Ccm3iECKO mice. Degradation of NETs by DNase I treatment improved the vascular barrier. The deposition of NETs in the cavernomas  of patients with CCM confirms the clinical relevance of NETs in CCM.


Asunto(s)
Trampas Extracelulares , Hemangioma Cavernoso del Sistema Nervioso Central , Animales , Proteínas Reguladoras de la Apoptosis/genética , Células Endoteliales/metabolismo , Trampas Extracelulares/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Humanos , Inflamación/patología , Proteínas de la Membrana/metabolismo , Ratones
5.
J Neuroinflammation ; 17(1): 113, 2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32276661

RESUMEN

BACKGROUND: Increasing evidence has suggested that a single nucleotide polymorphism in the Ncf1 gene is associated with experimental autoimmune encephalomyelitis (EAE). However, the mechanisms of NCF1-induced immunoregulatory effects remain poorly understood. In this study, we focus on NCF1 deficiency-mediated effects on EAE in NOS2 dependent and independent ways. METHODS: To determine the effects of NCF1 and NOS2 during EAE development, we have established recombinant mouse strains deficient at NCF1 and/or NOS2 in a crossbreeding system. Different strains allow us to examine the entire course of the disease in the Nos2-null mice bearing a Ncf1 gene that encodes a mutated NCF1, deficient in triggering oxidative burst, after immunization with recombinant myelin oligodendrocyte glycoprotein (MOG)79-96 peptides. The peptide-induced innate and adaptive immune responses were analyzed by flow cytometry. RESULTS: NCF1-deficient mice developed a reduced susceptibility to EAE, whereas NCF1-NOS2 double-deficient mice developed an enhanced EAE, as compared with NOS2-deficient mice. Flow cytometry analyses show that double deficiencies resulted in an increase of neutrophils in the spleen, accompanied with higher release of interleukin-1ß in neutrophils prior to EAE onset. The additional deficiency in NCF1 had no added effect on either interleukin-17 or interferon-γ secretion of T cells during the priming phase. CONCLUSIONS: These studies show that NCF1 and NOS2 interact to regulate peptide-induced EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , NADPH Oxidasas/inmunología , Óxido Nítrico Sintasa de Tipo II/inmunología , Animales , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo
6.
Antioxid Redox Signal ; 32(3): 161-172, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31873060

RESUMEN

Aims: In this study, we investigate the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in autoimmune diseases. We focus on oxidative regulation at the interaction between antigen-presenting cells (APCs) and T cells, and consequent effect of ROS and RNS on type II collagen (CII)-induced arthritis (CIA) model in mice. Results: Mice deficient in ROS and peroxide, due to a mutation in Ncf1 gene, develop an exaggerated CIA and a stronger T cell response to CII. In contrast, nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) was found to protect against CIA. The most pronounced protective effect was observed when L-NAME treatment started immediately after CII immunization. Ten days after immunization, the CII-reactive T cell-proliferative response was greater in Ncf1-mutant mice that were treated with L-NAME. T cells from L-NAME-treated mice, primed with CII, showed lower interleukin-2 secretion in response to CII in vitro. Moreover, inhibition of RNS production resulted in dysregulation of NOS1 (neuronal) expression in CII-reactive T cells. Innovation and Conclusion: The results support that deficiency of a paracrine factor as ROS and peroxide released by APC leads to pronounced activation of T cells and enhanced arthritis. An intrinsic factor might be RNS produced by NOS1, which likely enhanced T cell activation in an autocrine manner.


Asunto(s)
Artritis Experimental/inducido químicamente , Artritis Experimental/inmunología , Colágeno Tipo II/farmacología , Especies de Nitrógeno Reactivo/inmunología , Especies Reactivas de Oxígeno/inmunología , Linfocitos T/inmunología , Animales , Proliferación Celular/fisiología , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , NG-Nitroarginina Metil Éster/inmunología
7.
J Cell Mol Med ; 22(9): 4399-4409, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29992753

RESUMEN

Endogenous nucleic acids and their receptors may be involved in the initiation of systemic autoimmune diseases including rheumatoid arthritis (RA). As the role of the DNA sensing Toll-like receptor (TLR) 9 in RA is unclear, we aimed to investigate its involvement in the pathogenesis of autoimmune arthritis using three different experimental models of RA. The data obtained revealed involvement of TLR9 in the T cell-dependent phase of inflammatory arthritis. In rats with pristane-induced arthritis (PIA), TLR9 inhibition before disease onset reduced arthritis significantly and almost completely abolished bone erosion. Accordingly, serum levels of IL-6, α-1-acid-glycoprotein and rheumatoid factor were reduced. Moreover, in TLR9-/- mice, streptococcal cell wall (SCW)-induced arthritis was reduced in the T cell-dependent phase, whereas T cell-independent serum-transfer arthritis was not affected. Remarkably, while TLR7 expression did not change during in vitro osteoclastogenesis, TLR9 expression was higher in precursor cells than in mature osteoclasts and partial inhibition of osteoclastogenesis was achieved only by the TLR9 antagonist. These results demonstrate a pivotal role for TLR9 in the T cell-dependent phases of inflammatory arthritis and additionally suggest some role during osteoclastogenesis. Hence, endogenous DNA seems to be crucially involved in the pathophysiology of inflammatory autoimmune arthritis.


Asunto(s)
Artritis Experimental/genética , Articulaciones/inmunología , Osteoclastos/inmunología , Osteogénesis/genética , Receptor Toll-Like 9/genética , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/inmunología , Artritis Experimental/patología , Cartílago Articular/inmunología , Cartílago Articular/patología , Pared Celular/química , Mezclas Complejas/administración & dosificación , Regulación de la Expresión Génica , Interleucina-6/genética , Interleucina-6/inmunología , Articulaciones/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Orosomucoide/genética , Orosomucoide/inmunología , Osteoclastos/patología , Ratas , Factor Reumatoide/genética , Factor Reumatoide/inmunología , Transducción de Señal , Streptococcus pyogenes/química , Terpenos/administración & dosificación , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/inmunología
8.
Front Immunol ; 9: 451, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29706949

RESUMEN

Background: Collagen XI (CXI) is a heterotrimeric molecule with triple helical structure in which the α3(XI) chain is identical to the α1(II) chain of collagen II (CII), but with extensive posttranslational modifications. CXI molecules are intermingled in the cartilage collagen fibers, which are mainly composed of CII. One of the alpha chains in CXI is shared with CII and contains the immunodominant T cell epitope, but it is unclear whether there are shared B cell epitopes as the antibodies tend to recognize the triple helical structures. Methods: Mice expressing the susceptible immune response gene Aq were immunized with CII or CXI. Serum antibody responses were measured, monoclonal antibodies were isolated and analyzed for specificity to CII, CXI, and triple helical collagen peptides using bead-based multiplex immunoassays, enzyme-linked immunosorbent assays, and Western blots. Arthritogenicity of the antibodies was investigated by passive transfer experiments. Results: Immunization with CII or CXI leads to a strong T and B cell response, including a cross-reactive response to both collagen types. Immunization with CII leads to severe arthritis in mice, with a response toward CXI at the chronic stage, whereas CXI immunization induces very mild arthritis only. A series of monoclonal antibodies to CXI were isolated and of these, the L10D9 antibody bound to both CXI and CII equally strong, with a specific binding for the D3 epitope region of α3(XI) or α1(II) chain. The L10D9 antibody binds cartilage in vivo and induced severe arthritis. In contrast, the L5F3 antibody only showed weak binding and L7D8 antibody has no binding to cartilage and did not induce arthritis. The arthritogenic L10D9 antibody bound to an epitope shared with CII, the triple helical D3 epitope. Antibody levels to the shared D3 epitope were elevated in the sera from mice with arthritis as well as in rheumatoid arthritis. Conclusion: CXI is immunologically not exposed in healthy cartilage but contains T and B cell epitopes cross-reactive with CII, which could be activated in both mouse and human arthritis and could evoke an arthritogenic response.


Asunto(s)
Artritis/inmunología , Linfocitos B/inmunología , Cartílago/inmunología , Colágeno Tipo II/inmunología , Colágeno Tipo XI/inmunología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Epítopos Inmunodominantes/inmunología , Linfocitos T/inmunología , Animales , Autoanticuerpos/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos DBA , Ratas
9.
Sci Adv ; 4(5): eaas9864, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29774240

RESUMEN

Previous identification of the inducible nitric oxide synthase (NOS2) gene as a risk allele for psoriasis (Ps) and psoriatic arthritis (PsA) suggests a possible pathogenic role of nitric oxide (NO). Using a mouse model of mannan-induced Ps and PsA (MIP), where macrophages play a regulatory role by releasing reactive oxygen species (ROS), we found that NO was detectable before disease onset in mice, independent of a functional nicotinamide adenine dinucleotide phosphate oxidase 2 complex. MIP was suppressed by either deletion of Nos2 or inhibition of NO synthases with NG-nitro-l-arginine methyl ester, demonstrating that Nos2-derived NO is pathogenic. NOS2 expression was also up-regulated in lipopolysaccharide- and interferon-γ-stimulated monocyte subsets from patients with PsA compared to healthy controls. Nos2-dependent interleukin-1α (IL-1α) release from skin macrophages was essential for arthritis development by promoting IL-17 production of innate lymphoid cells. We conclude that Nos2-derived NO by tissue macrophages promotes MIP, in contrast to the protective effect by ROS.


Asunto(s)
Artritis Psoriásica/etiología , Artritis Psoriásica/metabolismo , Inmunidad Innata , Interleucina-17/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Mananos/inmunología , Óxido Nítrico Sintasa de Tipo II/genética , Alelos , Animales , Artritis Psoriásica/patología , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Interleucina-1alfa/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Ratones , Ratones Transgénicos , Óxido Nítrico/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
10.
Sci Rep ; 7(1): 14998, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118363

RESUMEN

Mineral oils are extensively used in our daily life, in food, cosmetics, biomedicine, vaccines and in different industrial applications. However, exposure to these mineral oils has been associated with immune adjuvant effects and the development of autoimmune diseases. Here we investigate the structural impacts of the hydrocarbon oil molecules on their adjuvanticity and autoimmunity. First, we showed that hydrocarbon oil molecules with small atomic differences could result in experimental arthritis in DA rats differing in disease severity, incidence, weight change and serum levels of acute phase proteins. Injection of these hydrocarbon oils resulted in the activation, proliferation and elevated expression of Th1 and especially Th17 cytokines by the T cells, which correlate with the arthritogenicity of the T cells. Furthermore, the more arthritogenic hydrocarbon oils resulted in an increased production of autoantibodies against cartilage joint specific, triple-helical type II collagen epitopes. When injected together with ovalbumin, the more arthritogenic hydrocarbon oils resulted in an increased production of αß T cell-dependent anti-ovalbumin antibodies. This study shows the arthritogenicity of hydrocarbon oils is associated with their adjuvant properties with implications to not only arthritis research but also other diseases and medical applications such as vaccines in which oil adjuvants are involved.


Asunto(s)
Adyuvantes Inmunológicos/efectos adversos , Artritis Experimental/inmunología , Autoinmunidad , Hidrocarburos/efectos adversos , Aceite Mineral/efectos adversos , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/química , Animales , Artritis Experimental/sangre , Artritis Experimental/diagnóstico , Artritis Experimental/patología , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Colágeno Tipo II/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Hidrocarburos/administración & dosificación , Hidrocarburos/química , Masculino , Aceite Mineral/administración & dosificación , Aceite Mineral/química , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología , Ratas , Índice de Severidad de la Enfermedad , Vacunas/administración & dosificación , Vacunas/efectos adversos , Vacunas/química
11.
Am J Pathol ; 187(5): 987-998, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28315676

RESUMEN

Rheumatoid arthritis is a complex disease associated with >100 risk loci, with the strongest association from the major histocompatibility complex (MHC) region. Here, we analyzed a new genetic association in the MHC class-III region (MHC-III) using adjuvant- and antigen-induced arthritis models. In addition, we used models for multiple sclerosis for comparison and dissected the MHC-III-mediated mechanisms of importance for antibody and T-cell responses to antigens. With the use of a panel of MHC-III recombinant inbred strains, we found that the 33-kb Ltab-Ncr3 haplotype in MHC-III was linked to the induction of arthritis with incomplete Freund's adjuvant, with similar effects in arthritis induced by several oil adjuvants (hexadecane, heptadecane, squalene, arlacel). Adoptive T-cell transfer experiment showed that this arthritis-protective effect operated during the priming of T cells by controlling their arthritogenicity. Interestingly, Ltab-Ncr3 did not regulate autoimmune diseases induced with tissue-specific antigens emulsified in adjuvant oils, such as collagen-induced arthritis or experimental autoimmune encephalomyelitis. No effect on antibody or T-cell response to tissue antigens in the Ltab-Ncr3 could be demonstrated. The finding that Ltab-Ncr3 is specific in regulating adjuvant-induced arthritis but not antigen-induced autoimmunity, and with unique effects on priming of autoreactive and arthritogenic T cells, provides new insight for understanding the regulation of autoimmune diseases.


Asunto(s)
Autoinmunidad/fisiología , Complejo Mayor de Histocompatibilidad/inmunología , Proteínas del Tejido Nervioso/fisiología , Adyuvantes Inmunológicos/toxicidad , Animales , Área Bajo la Curva , Artritis/inducido químicamente , Artritis/inmunología , Colágeno/fisiología , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Adyuvante de Freund/toxicidad , Lípidos/toxicidad , Masculino , Ratas Endogámicas , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
12.
Immunology ; 150(4): 408-417, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27861821

RESUMEN

Antigen presentation by the MHC-II to CD4+ T cells is important in adaptive immune responses. The class II transactivator (CIITA in human and C2TA in mouse) is the master regulator of MHC-II gene expression. It coordinates the transcription factors necessary for the transcription of MHC-II molecules. In humans, genetic variations in CIITA have been associated with differential expression of MHC-II and susceptibility to autoimmune diseases. Here we made use of a C2ta congenic mouse strain (expressing MHC-II haplotype H-2q ) to investigate the effect of the natural genetic polymorphisms in type I promoter of C2ta on MHC-II expression and function. We demonstrate that an allelic variant in the type I promoter of C2ta resulted in an increased expression of MHC-II on macrophages (72-151% higher mean florescence intensity) and conventional dendritic cells (13-65% higher mean florescence intensity) in both spleen and peripheral blood. The increase in MHC-II expression resulted in an increase in antigen presentation to T cells in vitro and increased T-cell activation. The differential MHC-II expression in B6Q.C2ta, however, did not alter the disease development in models of rheumatoid arthritis (collagen-induced arthritis and human glucose-6-phosphate-isomerase325-339 -peptide-induced arthritis), or multiple sclerosis (MOG1-125 protein-induced and MOG79-96 peptide-induced experimental autoimmune encephalomyelitis). This is the first study to address the role of an allelic variant in type I promoter of C2ta in MHC-II expression and autoimmune diseases; and shows that C2ta polymorphisms regulate MHC-II expression and T-cell responses but do not necessarily have a strong impact on autoimmune diseases.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Macrófagos/inmunología , Proteínas Nucleares/genética , Linfocitos T/inmunología , Transactivadores/genética , Alelos , Animales , Presentación de Antígeno , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Polimorfismo Genético , Regiones Promotoras Genéticas/genética
13.
Dis Model Mech ; 9(10): 1111-1123, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27736747

RESUMEN

Rheumatoid arthritis is a chronic inflammatory joint disorder characterised by erosive inflammation of the articular cartilage and by destruction of the synovial joints. It is regulated by both genetic and environmental factors, and, currently, there is no preventative treatment or cure for this disease. Genome-wide association studies have identified ∼100 new loci associated with rheumatoid arthritis, in addition to the already known locus within the major histocompatibility complex II region. However, together, these loci account for only a modest fraction of the genetic variance associated with this disease and very little is known about the pathogenic roles of most of the risk loci identified. Here, we discuss how rat models of rheumatoid arthritis are being used to detect quantitative trait loci that regulate different arthritic traits by genetic linkage analysis and to positionally clone the underlying causative genes using congenic strains. By isolating specific loci on a fixed genetic background, congenic strains overcome the challenges of genetic heterogeneity and environmental interactions associated with human studies. Most importantly, congenic strains allow functional experimental studies be performed to investigate the pathological consequences of natural genetic polymorphisms, as illustrated by the discovery of several major disease genes that contribute to arthritis in rats. We discuss how these advances have provided new biological insights into arthritis in humans.


Asunto(s)
Artritis Reumatoide/genética , Predisposición Genética a la Enfermedad , Polimorfismo Genético , Animales , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Humanos , Ratas
15.
G3 (Bethesda) ; 6(11): 3671-3683, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27646706

RESUMEN

To test the impact of genetic heterogeneity on cis- and trans-mediated mechanisms of gene expression regulation, we profiled the transcriptome of adipose tissue in 20 inbred congenic strains derived from diabetic Goto-Kakizaki (GK) rats and Brown-Norway (BN) controls, which contain well-defined blocks (1-183 Mb) of genetic polymorphisms, and in 123 genetically heterogeneous rats of an (GK × BN)F2 offspring. Within each congenic we identified 73-1351 differentially expressed genes (DEGs), only 7.7% of which mapped within the congenic blocks, and which may be regulated in cis The remainder localized outside the blocks, and therefore must be regulated in trans Most trans-regulated genes exhibited approximately twofold expression changes, consistent with monoallelic expression. Altered biological pathways were replicated between congenic strains sharing blocks of genetic polymorphisms, but polymorphisms at different loci also had redundant effects on transcription of common distant genes and pathways. We mapped 2735 expression quantitative trait loci (eQTL) in the F2 cross, including 26% predominantly cis-regulated genes, which validated DEGs in congenic strains. A hotspot of >300 eQTL in a 10 cM region of chromosome 1 was enriched in DEGs in a congenic strain. However, many DEGs among GK, BN and congenic strains did not replicate as eQTL in F2 hybrids, demonstrating distinct mechanisms of gene expression when alleles segregate in an outbred population or are fixed homozygous across the entire genome or in short genomic regions. Our analysis provides conceptual advances in our understanding of the complex architecture of genome expression and pathway regulation, and suggests a prominent impact of epistasis and monoallelic expression on gene transcription.

16.
Proc Natl Acad Sci U S A ; 113(26): E3716-24, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27303036

RESUMEN

Genome-wide association studies have revealed many genetic loci associated with complex autoimmune diseases. In rheumatoid arthritis (RA), the MHC gene HLA-DRB1 is the strongest candidate predicting disease development. It has been suggested that other immune-regulating genes in the MHC contribute to the disease risk, but this contribution has been difficult to show because of the strong linkage disequilibrium within the MHC. We isolated genomic regions in the form of congenic fragments in rats to test whether there are additional susceptibility loci in the MHC. By both congenic mapping in inbred strains and SNP typing in wild rats, we identified a conserved, 33-kb large haplotype Ltab-Ncr3 in the MHC-III region, which regulates the onset, severity, and chronicity of arthritis. The Ltab-Ncr3 haplotype consists of five polymorphic immunoregulatory genes: Lta (lymphotoxin-α), Tnf, Ltb (lymphotoxin-ß), Lst1 (leukocyte-specific transcript 1), and Ncr3 (natural cytotoxicity-triggering receptor 3). Significant correlation in the expression of the Ltab-Ncr3 genes suggests that interaction of these genes may be important in keeping these genes clustered together as a conserved haplotype. We studied the arthritis association and the spliceo-transcriptome of four different Ltab-Ncr3 haplotypes and showed that higher Ltb and Ncr3 expression, lower Lst1 expression, and the expression of a shorter splice variant of Lst1 correlate with reduced arthritis severity in rats. Interestingly, patients with mild RA also showed higher NCR3 expression and lower LST1 expression than patients with severe RA. These data demonstrate the importance of a conserved haplotype in the regulation of complex diseases such as arthritis.


Asunto(s)
Artritis Reumatoide/genética , Antígenos de Histocompatibilidad/genética , Animales , Artritis Reumatoide/inmunología , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos , Antígenos de Histocompatibilidad/inmunología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Linfotoxina-alfa/genética , Linfotoxina-alfa/inmunología , Linfotoxina beta/genética , Linfotoxina beta/inmunología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Receptor 3 Gatillante de la Citotoxidad Natural/genética , Receptor 3 Gatillante de la Citotoxidad Natural/inmunología , Ratas , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
17.
PLoS One ; 11(5): e0155936, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27227821

RESUMEN

BACKGROUND: To facilitate the development of therapies for rheumatoid arthritis (RA), the Innovative Medicines Initiative BTCure has combined the experience from several laboratories worldwide to establish a series of protocols for different animal models of arthritis that reflect the pathogenesis of RA. Here, we describe chronic pristane-induced arthritis (PIA) model in DA rats, and provide detailed instructions to set up and evaluate the model and for reporting data. METHODS: We optimized dose of pristane and immunization procedures and determined the effect of age, gender, and housing conditions. We further assessed cage-effects, reproducibility, and frequency of chronic arthritis, disease markers, and efficacy of standard and novel therapies. RESULTS: Out of 271 rats, 99.6% developed arthritis after pristane-administration. Mean values for day of onset, day of maximum arthritis severity and maximum clinical scores were 11.8±2.0 days, 20.3±5.1 days and 34.2±11 points on a 60-point scale, respectively. The mean frequency of chronic arthritis was 86% but approached 100% in long-term experiments over 110 days. Pristane was arthritogenic even at 5 microliters dose but needed to be administrated intradermally to induce robust disease with minimal variation. The development of arthritis was age-dependent but independent of gender and whether the rats were housed in conventional or barrier facilities. PIA correlated well with weight loss and acute phase reactants, and was ameliorated by etanercept, dexamethasone, cyclosporine A and fingolimod treatment. CONCLUSIONS: PIA has high incidence and excellent reproducibility. The chronic relapsing-remitting disease and limited systemic manifestations make it more suitable than adjuvant arthritis for long-term studies of joint-inflammation and screening and validation of new therapeutics.


Asunto(s)
Artritis Experimental/inducido químicamente , Artritis Experimental/patología , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/patología , Modelos Animales de Enfermedad , Inmunosupresores/toxicidad , Terpenos/toxicidad , Animales , Femenino , Masculino , Ratas
18.
J Immunol ; 194(6): 2539-50, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25672758

RESUMEN

Rheumatoid arthritis (RA) is associated with amino acid variants in multiple MHC molecules. The association to MHC class II (MHC-II) has been studied in several animal models of RA. In most cases these models depend on T cells restricted to a single immunodominant peptide of the immunizing Ag, which does not resemble the autoreactive T cells in RA. An exception is pristane-induced arthritis (PIA) in the rat where polyclonal T cells induce chronic arthritis after being primed against endogenous Ags. In this study, we used a mixed genetic and functional approach to show that RT1-Ba and RT1-Bb (RT1-B locus), the rat orthologs of HLA-DQA and HLA-DQB, determine the onset and severity of PIA. We isolated a 0.2-Mb interval within the MHC-II locus of three MHC-congenic strains, of which two were protected from severe PIA. Comparison of sequence and expression variation, as well as in vivo blocking of RT1-B and RT1-D (HLA-DR), showed that arthritis in these strains is regulated by coding polymorphisms in the RT1-B genes. Motif prediction based on MHC-II eluted peptides and structural homology modeling suggested that variants in the RT1-B P1 pocket, which likely affect the editing capacity by RT1-DM, are important for the development of PIA.


Asunto(s)
Artritis Experimental/genética , Artritis Reumatoide/genética , Predisposición Genética a la Enfermedad , Antígenos de Histocompatibilidad/genética , Secuencia de Aminoácidos , Aminoácidos/genética , Animales , Anticuerpos Bloqueadores/inmunología , Anticuerpos Bloqueadores/farmacología , Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Sitios de Unión/genética , Peso Corporal/efectos de los fármacos , Peso Corporal/inmunología , Modelos Animales de Enfermedad , Genotipo , Haplotipos/inmunología , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/inmunología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Polimorfismo Genético/inmunología , Estructura Terciaria de Proteína , Ratas , Índice de Severidad de la Enfermedad , Terpenos/inmunología
19.
PLoS Genet ; 10(2): e1004151, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586191

RESUMEN

Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Complejo Mayor de Histocompatibilidad/genética , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP , Alelos , Animales , Presentación de Antígeno , Diferenciación Celular/genética , Linaje de la Célula , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad/genética , Complejo Mayor de Histocompatibilidad/inmunología , Ratas , Recombinación Genética , Selección Genética
20.
Arthritis Rheum ; 64(8): 2537-47, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22391806

RESUMEN

OBJECTIVE: Chronic inflammation of the peripheral joints is a hallmark of rheumatoid arthritis (RA). The autoantibody response in RA has been shown to be directed mainly to ubiquitous antigens, whereas the response to cartilage proteins has been less extensively investigated. This study was undertaken to characterize the immune response in pristane-induced arthritis (PIA) in the rat to the cartilage-specific proteins type II collagen (CII) and type XI collagen (CXI) and to genetically fine-map their underlying major histocompatibility complex (MHC) associations. METHODS: The genetic control of CII and CXI immunity was mapped using intra-MHC-recombinant inbred strains immunized with the respective collagens. Reactivity with CII and CXI was tested in acute and chronic PIA and in 356 HLA-typed patients with recently diagnosed RA. RESULTS: Mapping of arthritis susceptibility within the MHC region revealed a 144-223-kb locus containing <12 genes, including paralogs for HLA-DQ and HLA-DR. Susceptibility to CII and CXI was linked to haplotypes RT1(av1) (DA) and RT1(f) (DA.1F), respectively. After injection of pristane, rats of both strains developed weak T cell and IgG responses to CII, but not to CXI. In chronic arthritis, however, collagen reactivity was stronger, specific for CXI, and restricted to rats with RT1(f) MHC. Among RA patients, 12% exhibited a specific IgG response to CXI, 6% to CII, and 6% to both collagens. CONCLUSION: These findings demonstrate a shift in cartilage recognition in early and chronic arthritis in the rat, suggesting that CXI autoreactivity contributes to the perpetuation of chronic disease. The results provide evidence of the importance of joint antigens in arthritis development.


Asunto(s)
Artritis/etiología , Artritis/inmunología , Colágeno Tipo XI/inmunología , Antígenos de Histocompatibilidad Clase II/sangre , Complejo Mayor de Histocompatibilidad/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Artritis/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Enfermedad Crónica , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inmunología , Femenino , Antígenos de Histocompatibilidad Clase II/análisis , Humanos , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Ratas , Ratas Endogámicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...