Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JASA Express Lett ; 1(6): 063601, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-36154366

RESUMEN

This paper presents a combined experimental and numerical study that characterises the directivity of blade-tower interaction (BTI) noise. Numerical computations were performed using a hybrid approach combining unsteady Reynolds-averaged Navier-Stokes equations and Curle's acoustic analogy, allowing the noise from the blades and the tower to be computed separately. The noise directivity of the blade and the tower components have a dipole pattern and a monopole-like pattern, respectively; hence, the resulting BTI noise directivity resembles an oval. Partial cancellations between the blade and tower components are also shown to affect the BTI noise directivity.


Asunto(s)
Acústica , Ruido
2.
J Acoust Soc Am ; 142(3): 1575, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28964080

RESUMEN

Numerical simulations are used to investigate the noise generated by the passage of a rotor blade past a fixed object (the blade-passage effects), which was studied by simulating a three-bladed rotor that is supported by a vertical cylindrical tower. To isolate the blade-passage effects, no incoming wind was introduced in the simulation. The symmetric blade was set to zero pitch angle relative to the plane of rotation and two blade-tower distances were investigated. The sliding mesh method was used to simulate the rotation of the blades and Curle's acoustic analogy was used to predict the noise generated from the simulated flow data. Intense force fluctuations occur during the interaction on both the tower and the passing blade, and these are the primary sources of blade-passage noise. The contribution of the force fluctuations on the support tower to blade-passage noise, which previously had been ignored, was revealed to be more significant than that of the blades. The numerical model successfully predicts the noise spectra, which are validated by the very good agreement with experimental measurements. The simulations provide a framework to better understand blade-tower interaction noise in various applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA