Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Immunother ; 47(3): 77-88, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38270462

RESUMEN

The chimeric antigen receptor (CAR) T-cell therapy in solid epithelial tumors has been explored, however, with limited success. As much of the preclinical work has relied on xenograft models in immunocompromised animals, the immune-related efficacies and toxicities may have been missed. In this study, we engineered syngeneic murine CAR T cells targeting the tumor form of human mucin-1 (tMUC1) and tested the MUC1 CAR T cells' efficacy and toxicity in the immunocompetent human MUC1-expressing mouse models. The MUC1 CAR T cells significantly eliminated murine pancreatic and breast cancer cell lines in vitro. In vivo, MUC1 CAR T cells significantly slowed the mammary gland tumor progression in the spontaneous PyVMT×MUC1.Tg (MMT) mice, prevented lung metastasis, and prolonged survival. Most importantly, there was minimal short or long-term toxicity with acceptable levels of transient liver toxicity but no kidney toxicity. In addition, the mice did not show any signs of weight loss or other behavioral changes with the treatment. We also report that a single dose of MUC1 CAR T-cell treatment modestly reduced the pancreatic tumor burden in a syngeneic orthotopic model of pancreatic ductal adenocarcinoma given at late stage of an established tumor. Taken together, these findings suggested the further development of tMUC1-targeted CAR T cells as an effective and relatively safe treatment modality for various tMUC1-expressing solid tumors.


Asunto(s)
Neoplasias Pancreáticas , Receptores Quiméricos de Antígenos , Humanos , Ratones , Animales , Linfocitos T , Mucina-1/genética , Mucina-1/metabolismo , Inmunoterapia Adoptiva , Neoplasias Pancreáticas/tratamiento farmacológico , Línea Celular Tumoral
2.
Biotechnol Bioeng ; 120(9): 2756-2764, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37227044

RESUMEN

Intercellular interactions and cell-cell communication are critical to regulating cell functions, especially in normal immune cells and immunotherapies. Ligand-receptor pairs mediating these cell-cell interactions can be identified using diverse experimental and computational approaches. Here, we reconstructed the intercellular interaction network between Mus musculus immune cells using publicly available receptor-ligand interaction databases and gene expression data from the immunological genome project. This reconstructed network accounts for 50,317 unique interactions between 16 cell types between 731 receptor-ligand pairs. Analysis of this network shows that cells of hematopoietic lineages use fewer communication pathways for interacting with each other, while nonhematopoietic stromal cells use the most network communications. We further observe that the WNT, BMP, and LAMININ pathways are the most significant contributors to the overall number of cell-cell interactions among the various pathways in the reconstructed communication network. This resource will enable the systematic analysis of normal and pathologic immune cell interactions, along with the study of emerging immunotherapies.


Asunto(s)
Comunicación Celular , Animales , Ratones , Ligandos
3.
Expert Rev Clin Immunol ; 18(12): 1217-1237, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36154551

RESUMEN

INTRODUCTION: The development of therapeutic antibodies targeting immune checkpoint molecules (ICMs) that induce long-term remissions in cancer patients has revolutionized cancer immunotherapy. However, a major drawback is that relapse after an initial response may be attributed to innate and acquired resistance. Additionally, these treatments are not beneficial to all patients. Therefore, the discovery and targeting of novel ICMs and their combination with other immunotherapeutics are urgently needed. AREAS COVERED: There has been increasing evidence of the CD96-TIGIT axis as ICMs in cancer immunotherapy in the last five years. This review will highlight and discuss the current knowledge about the role of CD96 and TIGIT in hematological and solid tumor immunotherapy in the context of empirical studies and clinical trials, and provide a comprehensive list of ongoing cancer clinical trials on the blockade of these ICMs, as well as the rationale behind combinational therapies with anti-PD-1/PD-L1 agents, chemotherapy drugs, and radiotherapy. Moreover, we share our perspectives on anti-CD96/TIGIT-related combination therapies. EXPERT OPINION: CD96-TIGIT axis regulates anti-tumor immune responses. Thus, the receptors within this axis are the potential candidates for cancer immunotherapy. Combining the inhibition of CD96-TIGIT with anti-PD-1/PD-L1 mAbs and chemotherapy drugs has shown relatively effective results in the context of preclinical studies and tumor models.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Receptores Inmunológicos , Inmunoterapia/métodos , Anticuerpos Monoclonales/uso terapéutico
4.
Int Immunopharmacol ; 108: 108895, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35729831

RESUMEN

γδ T cells are rare lymphocytes with cogent impact on immune responses. These cells are one of the earliest cells to be recruited in the sites of infection or tumors and play a critical role in coordinating innate and adaptive immune responses. The anti-tumor activity of γδ T cells have been numerously reported; nonetheless, there is controversy among published studies regarding their anti-tumor vs pro-tumor effect- especially in pancreatic cancer. A myriad of studies has confirmed that activated γδ T cells can potently lyse a broad variety of solid tumors and leukemia/lymphoma cells and produce an array of cytokines; however, early γδ T cell-based clinical trials did not lead to optimal efficacy, despite acceptable safety. Depending on the local micromilieu, γδ T cells can differentiate into tumor promoting or suppressing cells such as Th1-, Th2-, or Th17-like cells and produce prototypical cytokines such as interferon-γ (IFNγ) and interleukin (IL)-4/-10, IL-9, or IL-17. In an abstruse tumor such as pancreatic cancer- also known as immunologically cold tumor- γδ T cells are more likely to switch to their immunosuppressive phenotype. In this review we will adduce the accumulated knowledge on these two controversial aspects of γδ T cells in cancers- with a focus on solid tumors and pancreatic cancer. In addition, we propose strategies for enhancing the anti-tumor function of γδ T cells in cancers and discuss the potential future directions.


Asunto(s)
Linfocitos Intraepiteliales , Neoplasias Pancreáticas , Citocinas , Humanos , Receptores de Antígenos de Linfocitos T gamma-delta , Neoplasias Pancreáticas
5.
Stem Cell Res Ther ; 13(1): 140, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365241

RESUMEN

Autologous T cells genetically engineered to express chimeric antigen receptor (CAR) have shown promising outcomes and emerged as a new curative option for hematological malignancy, especially malignant neoplasm of B cells. Notably, when T cells are transduced with CAR constructs, composed of the antigen recognition domain of monoclonal antibodies, they retain their cytotoxic properties in a major histocompatibility complex (MHC)-independent manner. Despite its beneficial effect, the current CAR T cell therapy approach faces myriad challenges in solid tumors, including immunosuppressive tumor microenvironment (TME), tumor antigen heterogeneity, stromal impediment, and tumor accessibility, as well as tribulations such as on-target/off-tumor toxicity and cytokine release syndrome (CRS). Herein, we highlight the complications that hamper the effectiveness of CAR T cells in solid tumors and the strategies that have been recommended to overcome these hurdles and improve infused T cell performance.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva , Neoplasias/terapia , Receptores Quiméricos de Antígenos/genética , Linfocitos T , Microambiente Tumoral
6.
Front Cell Dev Biol ; 10: 821875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237602

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human cancers. Transforming Growth Factor Beta (TGF-ß) is a cytokine that switches from a tumor-suppressor at early stages to a tumor promoter in the late stages of tumor development, by yet unknown mechanisms. Tumor associated MUC1 is aberrantly glycosylated and overexpressed in >80% of PDAs and is associated with poor prognosis. MUC1 expression is found in the early stages of PDA development with subsequent increase in later stages. Analysis of human PDA samples from TCGA database showed significant differences in gene expression and survival profiles between low and high MUC1 samples. Further, high MUC1 expression was found to positively correlate to TGF-ßRII expression and negatively correlate to TGF-ßRI expression in PDA cell lines. We hypothesized that MUC1 overexpression induces TGF-ß mediated non-canonical signaling pathways which is known to be associated with poor prognosis. In this study, we report that MUC1 overexpression in PDA cells directly activates the JNK pathway in response to TGF-ß, and leads to increased cell viability via up-regulation and stabilization of c-Myc. Conversely, in low MUC1 expressing PDA cells, TGF-ß preserves its tumor-suppressive function and inhibits phosphorylation of JNK and stabilization of c-Myc. Knockdown of MUC1 in PDA cells also results in decreased phosphorylation of JNK and c-Myc in response to TGF-ß treatment. Taken together, the results indicate that overexpression of MUC1 plays a significant role in switching the TGF-ß function from a tumor-suppressor to a tumor promoter by directly activating JNK. Lastly, we report that high-MUC1 PDA tumors respond to TGF-ß neutralizing antibody in vivo showing significantly reduced tumor growth while low-MUC1 tumors do not respond to TGF-ß neutralizing antibody further confirming our hypothesis.

7.
Rev Med Virol ; 32(4): e2319, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34914147

RESUMEN

Human cytomegalovirus (HCMV) is ubiquitously prevalent. Immune system in healthy individuals is capable of controlling HCMV infection; however, HCMV can be life-threatening for immunocompromised individuals, such as transplant recipients. Both innate and adaptive immune systems are critically involved in the HCMV infection. Recent studies have indicated that regulatory immune cells which play essential roles in maintaining a healthy immune environment are closely related to immune response in HCMV infection. However, the exact role of regulatory immune cells in immune regulation and homoeostasis during the battle between HCMV and host still requires further research. In this review, we highlight the protective and pathological roles of regulatory immune cells in HCMV infection following hematopoietic stem cell transplantation (HSCT).


Asunto(s)
Infecciones por Citomegalovirus , Trasplante de Células Madre Hematopoyéticas , Infecciones por Herpesviridae , Citomegalovirus , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Huésped Inmunocomprometido
8.
Front Immunol ; 12: 699746, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489946

RESUMEN

The immune cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted rapidly evolving attention as a cancer treatment modality because of its competence to selectively eliminate tumor cells without instigating toxicity in vivo. TRAIL has revealed encouraging promise in preclinical reports in animal models as a cancer treatment option; however, the foremost constraint of the TRAIL therapy is the advancement of TRAIL resistance through a myriad of mechanisms in tumor cells. Investigations have documented that improvement of the expression of anti-apoptotic proteins and survival or proliferation involved signaling pathways concurrently suppressing the expression of pro-apoptotic proteins along with down-regulation of expression of TRAILR1 and TRAILR2, also known as death receptor 4 and 5 (DR4/5) are reliable for tumor cells resistance to TRAIL. Therefore, it seems that the development of a therapeutic approach for overcoming TRAIL resistance is of paramount importance. Studies currently have shown that combined treatment with anti-tumor agents, ranging from synthetic agents to natural products, and TRAIL could result in induction of apoptosis in TRAIL-resistant cells. Also, human mesenchymal stem/stromal cells (MSCs) engineered to generate and deliver TRAIL can provide both targeted and continued delivery of this apoptosis-inducing cytokine. Similarly, nanoparticle (NPs)-based TRAIL delivery offers novel platforms to defeat barricades to TRAIL therapeutic delivery. In the current review, we will focus on underlying mechanisms contributed to inducing resistance to TRAIL in tumor cells, and also discuss recent findings concerning the therapeutic efficacy of combined treatment of TRAIL with other antitumor compounds, and also TRAIL-delivery using human MSCs and NPs to overcome tumor cells resistance to TRAIL.


Asunto(s)
Apoptosis/fisiología , Inmunoterapia/métodos , Neoplasias/dietoterapia , Ligando Inductor de Apoptosis Relacionado con TNF , Animales , Humanos , Neoplasias/inmunología
9.
Biotechnol Bioeng ; 118(10): 3691-3705, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34241908

RESUMEN

Adoptive cell immunotherapy with chimeric antigen receptor T (CAR-T) cell has brought a revolutionary means of treatment for aggressive diseases such as hematologic malignancies and solid tumors. Over the last decade, the United States Food and Drug Administration (FDA) approved five types of CAR-T cell therapies for hematologic malignancies, including Idecabtagene vicleucel (Abecma), Lisocabtagene maraleucel (Breyanzi), Brexucabtagene autoleucel (Tecartus), Tisagenlecleucel (Kymriah), and Axicabtagene ciloleucel (Yescarta). Despite outstanding results gained from different clinical trials, CAR-T cell therapy is not free from side effects and toxicities, and needs careful investigations and improvements. Gene-editing technology, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, has emerged as a promising tool to address some of the CAR-T therapy hurdles. Using CRISPR/Cas9 technology, CAR expression as well as other cellular pathways can be modified in various ways to enhance CAR-T cells antitumor function and persistence in immunosuppressive tumor microenvironment. CRISPR/Cas9 technology can also be used to decrease CAR-T cell toxicities and side effects. Hereby, we discussed the practical challenges and hurdles related to the accuracy, efficiency, efficacy, safety, and delivery of CRISPR/Cas9 technology to the genetically engineered-T cells. Combining of these two state-of-the-art technologies, CRISPR/Cas9 and CAR-T cells, the field of oncology has an extraordinary opportunity to enter a new era of immunotherapy, which offers novel therapeutic options for different types of tumors.


Asunto(s)
Traslado Adoptivo , Sistemas CRISPR-Cas , Neoplasias Hematológicas/terapia , Receptores Quiméricos de Antígenos , Neoplasias Hematológicas/genética , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/uso terapéutico
10.
Stem Cell Res Ther ; 12(1): 374, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215336

RESUMEN

Adoptive cell therapy has received a great deal of interest in the treatment of advanced cancers that are resistant to traditional therapy. The tremendous success of chimeric antigen receptor (CAR)-engineered T (CAR-T) cells in the treatment of cancer, especially hematological cancers, has exposed CAR's potential. However, the toxicity and significant limitations of CAR-T cell immunotherapy prompted research into other immune cells as potential candidates for CAR engineering. NK cells are a major component of the innate immune system, especially for tumor immunosurveillance. They have a higher propensity for immunotherapy in hematologic malignancies because they can detect and eliminate cancerous cells more effectively. In comparison to CAR-T cells, CAR-NK cells can be prepared from allogeneic donors and are safer with a lower chance of cytokine release syndrome and graft-versus-host disease, as well as being a more efficient antitumor activity with high efficiency for off-the-shelf production. Moreover, CAR-NK cells may be modified to target various antigens while also increasing their expansion and survival in vivo. Extensive preclinical research has shown that NK cells can be effectively engineered to express CARs with substantial cytotoxic activity against both hematological and solid tumors, establishing evidence for potential clinical trials of CAR-NK cells. In this review, we discuss recent advances in CAR-NK cell engineering in a variety of hematological malignancies, as well as the main challenges that influence the outcomes of CAR-NK cell-based tumor immunotherapies.


Asunto(s)
Neoplasias Hematológicas , Receptores Quiméricos de Antígenos , Neoplasias Hematológicas/terapia , Humanos , Inmunoterapia Adoptiva , Células Asesinas Naturales , Receptores Quiméricos de Antígenos/genética , Linfocitos T
11.
Front Immunol ; 12: 681984, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248965

RESUMEN

Non-Hodgkin's lymphoma (NHL) is a cancer that starts in the lymphatic system. In NHL, the important part of the immune system, a type of white blood cells called lymphocytes become cancerous. NHL subtypes include marginal zone lymphoma, small lymphocytic lymphoma, follicular lymphoma (FL), and lymphoplasmacytic lymphoma. The disease can emerge in either aggressive or indolent form. 5-year survival duration after diagnosis is poor among patients with aggressive/relapsing form of NHL. Therefore, it is necessary to understand the molecular mechanisms of pathogenesis involved in NHL establishment and progression. In the next step, we can develop innovative therapies for NHL based on our knowledge in signaling pathways, surface antigens, and tumor milieu of NHL. In the recent few decades, several treatment solutions of NHL mainly based on targeted/directed therapies have been evaluated. These approaches include B-cell receptor (BCR) signaling inhibitors, immunomodulatory agents, monoclonal antibodies (mAbs), epigenetic modulators, Bcl-2 inhibitors, checkpoint inhibitors, and T-cell therapy. In recent years, methods based on T cell immunotherapy have been considered as a novel promising anti-cancer strategy in the treatment of various types of cancers, and particularly in blood cancers. These methods could significantly increase the capacity of the immune system to induce durable anti-cancer responses in patients with chemotherapy-resistant lymphoma. One of the promising therapy methods involved in the triumph of immunotherapy is the chimeric antigen receptor (CAR) T cells with dramatically improved killing activity against tumor cells. The CAR-T cell-based anti-cancer therapy targeting a pan-B-cell marker, CD19 is recently approved by the US Food and Drug Administration (FDA) for the treatment of chemotherapy-resistant B-cell NHL. In this review, we will discuss the structure, molecular mechanisms, results of clinical trials, and the toxicity of CAR-T cell-based therapies. Also, we will criticize the clinical aspects, the treatment considerations, and the challenges and possible drawbacks of the application of CAR-T cells in the treatment of NHL.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Linfoma no Hodgkin/inmunología , Linfoma no Hodgkin/terapia , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Antígenos de Neoplasias/inmunología , Terapia Combinada , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Ingeniería Genética , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/tendencias , Resultado del Tratamiento
12.
Front Cell Dev Biol ; 9: 686453, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322483

RESUMEN

Mesenchymal stem/stromal cell (MSC)-based therapy has become an attractive and advanced scientific research area in the context of cancer therapy. This interest is closely linked to the MSC-marked tropism for tumors, suggesting them as a rational and effective vehicle for drug delivery for both hematological and solid malignancies. Nonetheless, the therapeutic application of the MSCs in human tumors is still controversial because of the induction of several signaling pathways largely contributing to tumor progression and metastasis. In spite of some evidence supporting that MSCs may sustain cancer pathogenesis, increasing proofs have indicated the suppressive influences of MSCs on tumor cells. During the last years, a myriad of preclinical and some clinical studies have been carried out or are ongoing to address the safety and efficacy of the MSC-based delivery of therapeutic agents in diverse types of malignancies. A large number of studies have focused on the MSC application as delivery vehicles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), chemotherapeutic drug such as gemcitabine (GCB), paclitaxel (PTX), and doxorubicin (DOX), prodrugs such as 5-fluorocytosine (5-FC) and ganciclovir (GCV), and immune cell-activating cytokines along with oncolytic virus. In the current review, we evaluate the latest findings rendering the potential of MSCs to be employed as potent gene/drug delivery vehicle for inducing tumor regression with a special focus on the in vivo reports performed during the last two decades.

13.
Stem Cell Res Ther ; 12(1): 428, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321099

RESUMEN

To date, two chimeric antigen receptors (CAR)-T cell products from autologous T cells have been approved by The United States Food and Drug Administration (FDA). The case-by-case autologous T cell generation setting is largely considered as a pivotal restraining cause for its large-scale clinical use because of the costly and prolonged manufacturing procedure. Further, activated CAR-T cells mainly express immune checkpoint molecules, including CTLA4, PD1, LAG3, abrogating CAR-T anti-tumor activity. In addition, CAR-T cell therapy potently results in some toxicity, such as cytokine releases syndrome (CRS). Therefore, the development of the universal allogeneic T cells with higher anti-tumor effects is of paramount importance. Thus, genome-editing technologies, in particular, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 are currently being used to establish "off-the-shelf" CAR-T cells with robust resistance to immune cell-suppressive molecules. In fact, that simultaneous ablation of PD-1, T cell receptor alpha constant (TRAC or TCR), and also ß-2 microglobulin (B2M) by CRISPR-Cas9 technique can support the manufacture of universal CAR-T cells with robust resistance to PD-L1. . Indeed, the ablation of ß2M or TARC can severely hinder swift elimination of allogeneic T cells those express foreign HLA-I molecules, and thereby enables the generation of CAR-T cells from allogeneic healthy donors T cells with higher persistence in vivo. Herein, we will deliver a brief overview of the CAR-T cell application in the context of tumor immunotherapy. More importantly, we will discuss recent finding concerning the application of genome editing technologies for preparing universal CAR-T cells or cells that can effectively counter tumor escape, with a special focus on CRISPR-Cas9 technology.


Asunto(s)
Receptores Quiméricos de Antígenos , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Inmunoterapia , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo
14.
Front Oncol ; 11: 673276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178661

RESUMEN

The tumor microenvironment (TME) is greatly multifaceted and immune escape is an imperative attribute of tumors fostering tumor progression and metastasis. Based on reports, the restricted achievement attained by T cell immunotherapy reflects the prominence of emerging other innovative immunotherapeutics, in particular, natural killer (NK) cells-based treatments. Human NK cells act as the foremost innate immune effector cells against tumors and are vastly heterogeneous in the TME. Currently, there exists a rapidly evolving interest in the progress of chimeric antigen receptor (CAR)-engineered NK cells for tumor immunotherapy. CAR-NK cells superiorities over CAR-T cells in terms of better safety (e.g., absence or minimal cytokine release syndrome (CRS) and graft-versus-host disease (GVHD), engaging various mechanisms for stimulating cytotoxic function, and high feasibility for 'off-the-shelf' manufacturing. These effector cells could be modified to target various antigens, improve proliferation and persistence in vivo, upturn infiltration into tumors, and defeat resistant TME, which in turn, result in a desired anti-tumor response. More importantly, CAR-NK cells represent antigen receptors against tumor-associated antigens (TAAs), thereby redirecting the effector NK cells and supporting tumor-related immunosurveillance. In the current review, we focus on recent progress in the therapeutic competence of CAR-NK cells in solid tumors and offer a concise summary of the present hurdles affecting therapeutic outcomes of CAR-NK cell-based tumor immunotherapies.

15.
Pharm Res ; 38(6): 931-945, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34114161

RESUMEN

Chimeric antigen receptor T (CAR-T) cell therapy has been increasingly conducted for cancer patients in clinical settings. Progress in this therapeutic approach is hampered by the lack of a solid manufacturing process, T lymphocytes, and tumor-specific antigens. T cell source used in CAR-T cell therapy is derived predominantly from the patient's own T lymphocytes, which makes this approach impracticable to patients with progressive diseases and T leukemia. The generation of autologous CAR-T cells is time-consuming due to the lack of readily available T lymphocytes and is not applicable for third-party patients. Pluripotent stem cells, such as human induced pluripotent stem cells (hiPSCs), can provide an unlimited T cell source for CAR-T cell development with the potential of generating off-the-shelf T cell products. T-iPSCs (iPSC-derived T cells) are phenotypically defined, expandable, and as functional as physiological T cells. The combination of iPSC and CAR technologies provides an exciting opportunity to oncology and greatly facilitates cell-based therapy for cancer patients. However, T-iPSCs, in combination with CARs, are at the early stage of development and need further pre-clinical and clinical studies. This review will critically discuss the progress made in iPSC-derived T cells and provides a roadmap for the development of CAR iPSC-derived T cells and off-the-shelf T-iPSCs.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Inmunoterapia Adoptiva/métodos , Células Madre Pluripotentes Inducidas/trasplante , Receptores Quiméricos de Antígenos/uso terapéutico , Linfocitos T/trasplante , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Humanos , Inmunoterapia Adoptiva/tendencias , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
16.
Front Immunol ; 12: 688460, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177941

RESUMEN

Survival after solid organ transplantation (SOT) is limited by chronic rejection as well as the need for lifelong immunosuppression and its associated toxicities. Several preclinical and clinical studies have tested methods designed to induce transplantation tolerance without lifelong immune suppression. The limited success of these strategies has led to the development of clinical protocols that combine SOT with other approaches, such as allogeneic hematopoietic stem cell transplantation (HSCT). HSCT prior to SOT facilitates engraftment of donor cells that can drive immune tolerance. Recent innovations in graft manipulation strategies and post-HSCT immune therapy provide further advances in promoting tolerance and improving clinical outcomes. In this review, we discuss conventional and unconventional immunological mechanisms underlying the development of immune tolerance in SOT recipients and how they can inform clinical advances. Specifically, we review the most recent mechanistic studies elucidating which immune regulatory cells dampen cytotoxic immune reactivity while fostering a tolerogenic environment. We further discuss how this understanding of regulatory cells can shape graft engineering and other therapeutic strategies to improve long-term outcomes for patients receiving HSCT and SOT.


Asunto(s)
Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Trasplante de Células Madre Hematopoyéticas , Trasplante de Órganos/efectos adversos , Tolerancia al Trasplante , Inmunidad Adaptativa , Animales , Rechazo de Injerto/inmunología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Inmunidad Innata , Inmunosupresores/efectos adversos , Inmunoterapia , Factores de Riesgo , Trasplante Homólogo , Resultado del Tratamiento
17.
Cancer Cell Int ; 21(1): 298, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098947

RESUMEN

BACKGROUND: The natural killer (NK) cells differentiated from umbilical cord blood (UCB) hematopoietic stem cells (HSCs) may be more suitable for cell-based immunotherapy compared to the NK cells from adult donors. This is due to the possibility to choose alloreactive donors and potentially more robust in vivo expansion. However, the cytotoxicity of UCB-HSC-derived NK cells against cancer cells might be suboptimal. To overcome this obstacle, we attempted to generate NK cells with potent antitumor activity by targeting RAS/MAPK, IGF-1R and TGF-ß signaling pathways using IL-15, IGF-1 and SIS3 respectively. METHODS: The CD34 + cells were isolated from human UCB mononuclear cells through magnetic activation cell sorting (MACS) with purity of (≥ 90%) and were subjected to differentiate into NK cells. After 21 days of induction with SFTG36 (SCF, FLt-3L, TPO, GM-CSF, IL-3 and IL-6), IS721 (IGF-1, SIS3, IL-7 and IL-21) and IL-15/Hsp70 media, NK cells phenotypes were studied and their cytotoxicity against K562 human erythroleukemia cells and SKOV3 ovarian carcinoma cells was analyzed. RESULTS: The NK cells induced in SFTG36/IS721 medium were selected for activation due to their higher expression of CD56 + 16 + CD3 - (93.23% ± 0.75) and mean fluorescence intensity (MFI) of NKG2D + (168.66 ± 20.00) and also a higher fold expansion potential (11.893 ± 1.712) compared to the other groups. These cells once activated with IL-15, demonstrated a higher cytotoxicity against K562 (≥ 90%; P ≤ 0.001) and SKOV3 tumor cells (≥ 65%; P ≤ 0.001) compared to IL-15/Hsp70-activated NK cells. CONCLUSIONS: The differentiation of ex vivo expanded CD34 + cells through manipulation of RAS/MAPK, IGF-1R and TGF-ß signaling pathways is an efficient approach for generating functional NK cells that can be used for cancer immunotherapy.

18.
Cancer Sci ; 112(9): 3427-3436, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34050690

RESUMEN

Chimeric antigen receptors (CARs) have a unique facet of synthetic biology and offer a paradigm shift in personalized medicine as they can use and redirect the patient's immune cells to attack cancer cells. CAR-natural killer (NK) cells combine the targeted specificity of antigens with the subsequent intracellular signaling ability of the receptors to increase their anti-cancer functions. Importantly, CAR-NK cells can be utilized as universal cell-based therapy without requiring human leukocyte antigen (HLA) matching or earlier contact with tumor-associated antigens (TAAs). Indeed, CAR-NK cells can be adapted to recognize various antigens, hold higher proliferation capacity, and in vivo persistence, show improved infiltration into the tumors, and the ability to overcome the resistant tumor microenvironment leading to sustained cytotoxicity against tumors. Accumulating evidence from recent in vivo studies rendering CAR-NK cell anti-cancer competencies renewed the attention in the context of cancer immunotherapy, as these redirected effector cells can be used in the development of the "off-the-shelf" anti-cancer immunotherapeutic products. In the current review, we focus on the therapeutic efficacy of CAR-NK cell therapies for treating various human malignancies, including hematological malignancies and solid tumors, and will discuss the recent findings in this regard, with a special focus on animal studies.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Neoplasias Hematológicas/terapia , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Receptores Quiméricos de Antígenos/inmunología , Animales , Antígenos de Neoplasias/inmunología , Ingeniería Genética/métodos , Vectores Genéticos , Humanos , Ratones , Receptores Quiméricos de Antígenos/genética , Resultado del Tratamiento , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
19.
20.
Crit Rev Microbiol ; 46(6): 689-702, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33023358

RESUMEN

Intensive worldwide efforts are underway to determine both the pathogenesis of SARS-CoV-2 infection and the immune responses in COVID-19 patients in order to develop effective therapeutics and vaccines. One type of cell that may contribute to these immune responses is the γδ T lymphocyte, which plays a key role in immunosurveillance of the mucosal and epithelial barriers by rapidly responding to pathogens. Although found in low numbers in blood, γδ T cells consist the majority of tissue-resident T cells and participate in the front line of the host immune defense. Previous studies have demonstrated the critical protective role of γδ T cells in immune responses to other respiratory viruses, including SARS-CoV-1. However, no studies have profoundly investigated these cells in COVID-19 patients to date. γδ T cells can be safely expanded in vivo using existing inexpensive FDA-approved drugs such as bisphosphonate, in order to test its protective immune response to SARS-CoV-2. To support this line of research, we review insights gained from previous coronavirus research, along with recent findings, discussing the potential role of γδ T cells in controlling SARS-CoV-2. We conclude by proposing several strategies to enhance γδ T cell's antiviral function, which may be used in developing therapies for COVID-19.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Betacoronavirus/genética , COVID-19 , Infecciones por Coronavirus/virología , Humanos , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...