Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38695170

RESUMEN

BACKGROUND: Macrophages play a crucial role in atherosclerotic plaque formation, and the death of macrophages is a vital factor in determining the fate of atherosclerosis. GSDMD (gasdermin D)-mediated pyroptosis is a programmed cell death, characterized by membrane pore formation and inflammatory factor release. METHODS: ApoE-/- and Gsdmd-/- ApoE-/- mice, bone marrow transplantation, and AAV-F4/80-shGSDMD were used to examine the effect of macrophage-derived GSDMD on atherosclerosis. Single-cell RNA sequencing was used to investigate the changing profile of different cellular components and the cellular localization of GSDMD during atherosclerosis. RESULTS: First, we found that GSDMD is activated in human and mouse atherosclerotic plaques and Gsdmd-/- attenuates the atherosclerotic lesion area in high-fat diet-fed ApoE-/- mice. We performed single-cell RNA sequencing of ApoE-/- and Gsdmd-/- ApoE-/- mouse aortas and showed that GSDMD is principally expressed in atherosclerotic macrophages. Using bone marrow transplantation and AAV-F4/80-shGSDMD, we identified the potential role of macrophage-derived GSDMD in aortic pyroptosis and atherosclerotic injuries in vivo. Mechanistically, GSDMD contributes to mitochondrial perforation and mitochondrial DNA leakage and subsequently activates the STING (stimulator of interferon gene)-IRF3 (interferon regulatory factor 3)/NF-κB (nuclear factor kappa B) axis. Meanwhile, GSDMD regulates the STING pathway activation and macrophage migration via cytokine secretion. Inhibition of GSDMD with GSDMD-specific inhibitor GI-Y1 can effectively alleviate the progression of atherosclerosis. CONCLUSIONS: Our study has provided a novel macrophage-derived GSDMD mechanism in the promotion of atherosclerosis and demonstrated that GSDMD can be a potential therapeutic target for atherosclerosis.

2.
Int Immunopharmacol ; 134: 112143, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692016

RESUMEN

Chronic inflammation is a significant contributor to hypertensive heart failure. Carnosol (Car), primarily derived from the sage plant (Salvia carnosa), exhibits anti-inflammatory properties in a range of systems. Nevertheless, the influence of angiotensin II (Ang II) on cardiac remodeling remains uncharted. Car was shown to protect mice's hearts against Ang II-induced heart damage at dosages of 20 and 40 mg/kg/d. This protection was evident in a concentration-related decrease in the remodeling of the heart and dysfunction. Examination of the transcriptome revealed that the pivotal roles in mediating the protective effects of Car involved inhibiting Ang II-induced inflammation and the activation of the mitogen-activated protein kinase (MAPK) pathway. Furthermore, Car was found to inhibit p38 phosphorylation, therefore reducing the level of inflammation in cultured cardiomyocytes and mouse hearts. This effect was attributed to the direct binding to p38 and inhibition of p38 protein phosphorylation by Car both in vitro and in vivo. In addition, the effects of Car on inflammation were neutralized when p38 was blocked in cardiomyocytes.

3.
Acta Pharmacol Sin ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641745

RESUMEN

Hypertension is a prominent contributor to vascular injury. Deubiquinatase has been implicated in the regulation of hypertension-induced vascular injury. In the present study we investigated the specific role of deubiquinatase YOD1 in hypertension-induced vascular injury. Vascular endothelial endothelial-mesenchymal transition (EndMT) was induced in male WT and YOD1-/- mice by administration of Ang II (1 µg/kg per minute) via osmotic pump for four weeks. We showed a significantly increased expression of YOD1 in mouse vascular endothelial cells upon Ang II stimulation. Knockout of YOD1 resulted in a notable reduction in EndMT in vascular endothelial cells of Ang II-treated mouse; a similar result was observed in Ang II-treated human umbilical vein endothelial cells (HUVECs). We then conducted LC-MS/MS and co-immunoprecipitation (Co-IP) analyses to verify the binding between YOD1 and EndMT-related proteins, and found that YOD1 directly bound to ß-catenin in HUVECs via its ovarian tumor-associated protease (OTU) domain, and histidine at 262 performing deubiquitination to maintain ß-catenin protein stability by removing the K48 ubiquitin chain from ß-catenin and preventing its proteasome degradation, thereby promoting EndMT of vascular endothelial cells. Oral administration of ß-catenin inhibitor MSAB (20 mg/kg, every other day for four weeks) eliminated the protective effect of YOD1 deletion on vascular endothelial injury. In conclusion, we demonstrate a new YOD1-ß-catenin axis in regulating Ang II-induced vascular endothelial injury and reveal YOD1 as a deubiquitinating enzyme for ß-catenin, suggesting that targeting YOD1 holds promise as a potential therapeutic strategy for treating ß-catenin-mediated vascular diseases.

4.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167061, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342418

RESUMEN

BACKGROUND: Cardiac hypertrophy is a crucial pathological characteristic of hypertensive heart disease and subsequent heart failure. Deubiquitinating enzymes (DUBs) have been found to be involved in the regulation of myocardial hypertrophy. OTU Domain-Containing Protein 6a (OTUD6a) is a recently identified DUB. To date, the potential role of OTUD6a in myocardial hypertrophy has not yet been revealed. METHODS AND RESULTS: We examined the up-regulated level of OTUD6a in mouse or human hypertrophic heart tissues. Then, transverse aortic constriction (TAC)- or angiotensin II (Ang II)- induced ventricular hypertrophy and dysfunction were significantly attenuated in OTUD6a gene knockout mice (OTUD6a-/-). In mechanism, we identified that the Stimulator of Interferon Genes (STING) is a direct substrate protein of OTUD6a via immunoprecipitation assay and mass spectrometry. OTUD6a maintains STING stability via clearing the K48-linked ubiquitin in cardiomyocytes. Subsequently, OTUD6a regulates the STING-downstream NF-κB signaling activation and inflammatory gene expression both in vivo and in vitro. Inhibition of STING blocked OTUD6a overexpression-induced inflammatory and hypertrophic responses in cardiomyocytes. CONCLUSION: This finding extends our understanding of the detrimental role of OTUD6a in myocardial hypertrophy and identifies STING as a deubiquinating substrate of OTUD6a, indicating that targeting OTUD6a could be a potential strategy for the treatment of cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Insuficiencia Cardíaca , Animales , Humanos , Ratones , Cardiomegalia/metabolismo , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Insuficiencia Cardíaca/metabolismo , Inflamación/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo
5.
Int Immunopharmacol ; 128: 111554, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262162

RESUMEN

Macrophage is a vital factor in determining the fate of abdominal aortic aneurysm (AAA). The crosstalk between macrophage and other cells plays a crucial role in the development of aneurysm. Gasdermin D (GSDMD) is a vital executive protein of pyroptosis, which is a novel programmed cell death associated with inflammation. In this study, we identified aortic macrophage as the main expressing cell of GSDMD in AAA. Using Gsdmd-/-ApoE-/- mouse and AAV-F4/80-shGSDMD, we demonstrated the potential role of macrophage-derived GSDMD in AAA and aortic pyroptosis induced by Ang II in vivo. In vitro experiments showed that GSDMD promotes the pyroptosis of mouse primary peritoneal macrophages (MPMs), murine aortic vascular smooth muscle cells (MOVAS) and primary smooth muscle cells. Mechanistically, a mouse cytokine antibody array showed that Gsdmd-/- inhibited LPS + nigericin (LN)- induced secretion of multiple cytokines from MPMs. Furthermore, GSDMD is involved in the crosstalk between MPMs and MOVAS via cytokine secretion. This study provides a novel fundamental insight into macrophage-derived GSDMD in AAA and showed that GSDMD could be a promising therapeutic target for AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Piroptosis , Animales , Ratones , Angiotensina II/metabolismo , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Macrófagos Peritoneales/metabolismo , Miocitos del Músculo Liso/metabolismo
6.
Am J Physiol Cell Physiol ; 326(2): C400-C413, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38105755

RESUMEN

Kidney fibrosis is a prominent pathological feature of hypertensive kidney diseases (HKD). Recent studies have highlighted the role of ubiquitinating/deubiquitinating protein modification in kidney pathophysiology. Ovarian tumor domain-containing protein 6 A (OTUD6A) is a deubiquitinating enzyme involved in tumor progression. However, its role in kidney pathophysiology remains elusive. We aimed to investigate the role and underlying mechanism of OTUD6A during kidney fibrosis in HKD. The results revealed higher OTUD6A expression in kidney tissues of nephropathy patients and mice with chronic angiotensin II (Ang II) administration than that from the control ones. OTUD6A was mainly located in tubular epithelial cells. Moreover, OTUD6A deficiency significantly protected mice against Ang II-induced kidney dysfunction and fibrosis. Also, knocking OTUD6A down suppressed Ang II-induced fibrosis in cultured tubular epithelial cells, whereas overexpression of OTUD6A enhanced fibrogenic responses. Mechanistically, OTUD6A bounded to signal transducer and activator of transcription 3 (STAT3) and removed K63-linked-ubiquitin chains to promote STAT3 phosphorylation at tyrosine 705 position and nuclear translocation, which then induced profibrotic gene transcription in epithelial cells. These studies identified STAT3 as a direct substrate of OTUD6A and highlighted the pivotal role of OTUD6A in Ang II-induced kidney injury, indicating OTUD6A as a potential therapeutic target for HKD.NEW & NOTEWORTHY Ovarian tumor domain-containing protein 6 A (OTUD6A) knockout mice are protected against angiotensin II-induced kidney dysfunction and fibrosis. OTUD6A promotes pathological kidney remodeling and dysfunction by deubiquitinating signal transducer and activator of transcription 3 (STAT3). OTUD6A binds to and removes K63-linked-ubiquitin chains of STAT3 to promote its phosphorylation and activation, and subsequently enhances kidney fibrosis.


Asunto(s)
Hipertensión Renal , Nefritis , Neoplasias Ováricas , Humanos , Ratones , Animales , Femenino , Angiotensina II/farmacología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Riñón/metabolismo , Hipertensión Renal/metabolismo , Hipertensión Renal/patología , Células Epiteliales/metabolismo , Fibrosis , Neoplasias Ováricas/metabolismo , Ubiquitinas/metabolismo , Ratones Endogámicos C57BL
7.
Basic Res Cardiol ; 118(1): 40, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37782407

RESUMEN

Activation of gasdermin D (GSDMD) and its concomitant cardiomyocyte pyroptosis are critically involved in multiple cardiac pathological conditions. Pharmacological inhibition or gene knockout of GSDMD could protect cardiomyocyte from pyroptosis and dysfunction. Thus, seeking and developing highly potent GSDMD inhibitors probably provide an attractive strategy for treating diseases targeting GSDMD. Through structure-based virtual screening, pharmacological screening and subsequent pharmacological validations, we preliminarily identified GSDMD inhibitor Y1 (GI-Y1) as a selective GSDMD inhibitor with cardioprotective effects. Mechanistically, GI-Y1 binds to GSDMD and inhibits lipid- binding and pyroptotic pore formation of GSDMD-N by targeting the Arg7 residue. Importantly, we confirmed the cardioprotective effect of GI-Y1 on myocardial I/R injury and cardiac remodeling by targeting GSDMD. More extensively, GI-Y1 also inhibited the mitochondrial binding of GSDMD-N and its concomitant mitochondrial dysfunction. The findings of this study identified a new drug (GI-Y1) for the treatment of cardiac disorders by targeting GSDMD, and provide a new tool compound for pyroptosis research.


Asunto(s)
Cardiopatías , Daño por Reperfusión , Humanos , Piroptosis , Miocitos Cardíacos , Isquemia , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros
8.
Phytomedicine ; 121: 155105, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801893

RESUMEN

BACKGROUND: Doxorubicin (Dox), which is an anticancer drug, has significant cardiac toxicity and side effects. Pyroptosis occurs during Dox-induced cardiotoxicity (DIC), and drug inhibition of this process is one therapeutic approach for treating DIC. Previous studies have indicated that emodin can reduce pyroptosis. However, the role of emodin in DIC and its molecular targets remain unknown. HYPOTHESIS/PURPOSE: We aimed to clarify the protective role of emodin in mitigating DIC, as well as the mechanisms underlying this effect. METHODS: The model of DIC was established via the intraperitoneal administration of Dox at a dosage of 5 mg/kg per week for a span of 4 weeks. Emodin at two different doses (10 and 20 mg/kg) or a vehicle was intragastrically administered to the mice once per day throughout the Dox treatment period. Cardiac function, myocardial injury markers, pathological morphology of the heart, level of pyroptosis and mitochondrial function were assessed. Protein microarray, biolayer interferometry and pull-down assays were used to confirm the target of emodin. Moreover, GSDMD-overexpressing plasmids were transfected into GSDMD-/- mice and HL-1 cells to further verify whether emodin suppressed GSDMD activation. RESULTS: Emodin therapy markedly enhanced cardiac function and reduced cardiomyocyte pyroptosis in mice induced by Dox. Mechanistically, emodin binds to GSDMD and inhibits the activation of GSDMD by targeting the Trp415 and Leu290 residues. Moreover, emodin was able to mitigate Dox-induced cardiac dysfunction and myocardial injury in GSDMD-/- mice overexpressing GSDMD, as shown by increased EF and FS, decreased serum levels of CK-MB, LDH and IL-1ß and mitigated cell death and cell morphological disorder. Additionally, emodin treatment significantly reduced GSDMD-N expression and plasma membrane disruption in HL-1 cells overexpressing GSDMD induced by Dox. In addition, emodin reduced mitochondrial damage by alleviating Dox-induced GSDMD perforation in the mitochondrial membrane. CONCLUSION: Emodin has the potential to attenuate DIC by directly binding to GSDMD to inhibit pyroptosis. Emodin may become a promising drug for prevention and treatment of DIC.


Asunto(s)
Emodina , Miocitos Cardíacos , Ratones , Animales , Piroptosis , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Emodina/farmacología , Doxorrubicina/farmacología
9.
Heliyon ; 9(6): e16619, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37303505

RESUMEN

Vascular smooth muscle cells (VSMCs) are primarily responsible for vasoconstriction and the regulation of blood pressure1. Pyroptosis, a particular form of regulated cell death, is involved in multiple vascular injuries, including hypertensive vascular dysfunction. This pyroptotic cell death is mediated by the pore-forming protein of Gasdermin D (GSDMD). This study was designed to examine the direct effect of GSDMD on smooth muscle cell pyroptosis and vascular remodeling. Findings revealed that GSDMD was activated in Angiotensin (Ang) II- treated aortas. We then showed that genetic deletion of Gsdmd reduced vascular remodeling and aorta pyroptosis induced by Ang II in vivo. Aberrant expression of GSDMD by recombinant AAV9 virus carrying Gsdmd cDNA aggravated the level of pyroptosis in aortas of Ang II mice. Gain- and loss-of- function analysis further confirmed that GSDMD regulated the pyroptosis of murine aortic vascular smooth muscle cells (MOVAS) in an in vitro model of tumor necrosis factor (TNF)-α treatment, which was achieved by transfecting expressing plasmid or siRNA, respectively. Overall, this study provided evidence supporting the active involvement of GSDMD in smooth muscle cell pyroptosis and Ang II-induced mice vascular injury. This finding lends credence to GSDMD as a potential therapeutic target for hypertensive vascular remodeling via inhibiting pyroptosis.

10.
Circ Res ; 132(4): 465-480, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36722348

RESUMEN

BACKGROUND: Pathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of pathological cardiac hypertrophy will contribute to the treatment of heart failure. DUBs (deubiquitinating enzymes) are essential to cardiac pathophysiology by precisely controlling protein function, localization, and degradation. This study set out to investigate the role and molecular mechanism of a DUB, USP25 (ubiquitin-specific peptidase 25), in pathological cardiac hypertrophy. METHODS: The role of USP25 in myocardial hypertrophy was evaluated in murine cardiomyocytes in response to Ang II (angiotensin II) and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of heart failure patients. Liquid chromotography with mass spectrometry/mass spectrometry analysis combined with Co-IP was used to identify SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2A), an antihypertrophy protein, as an interacting protein of USP25. To clarify the molecular mechanism of USP25 in the regulation of SERCA2a, we constructed a series of mutant plasmids of USP25. In addition, we overexpressed USP25 and SERCA2a in the heart with adenoassociated virus serotype 9 vectors to validate the biological function of USP25 and SERCA2a interaction. RESULTS: We revealed increased protein level of USP25 in murine cardiomyocytes subject to Ang II and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of patients with heart failure. USP25 deficiency aggravated cardiac hypertrophy and cardiac dysfunction under Ang II and transverse aortic constriction treatment. Mechanistically, USP25 bound to SERCA2a directly via its USP (ubiquitin-specific protease) domain and cysteine at position 178 of USP25 exerts deubiquitination to maintain the stability of the SERCA2a protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby maintaining calcium handling in cardiomyocytes. Moreover, restoration of USP25 expression via adenoassociated virus serotype 9 vectors in USP25-/- mice attenuated Ang II-induced cardiac hypertrophy and cardiac dysfunction, whereas myocardial overexpression of SERCA2a could mimic the effect of USP25. CONCLUSIONS: We confirmed that USP25 inhibited cardiac hypertrophy by deubiquitinating and stabilizing SERCA2a.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Animales , Ratones , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Ubiquitina Tiolesterasa/genética
11.
Phytother Res ; 37(3): 860-871, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36420902

RESUMEN

Obesity-induced cardiomyopathy (OIC) is an increasingly serious global disease caused by obesity. Chronic inflammation greatly contributes to the pathogenesis of OIC. This study aimed to explore the role and mechanism of tabersonine (Tab), a natural alkaloid with antiinflammatory activity, in the treatment of OIC. High fat diet (HFD)-induced obese mice were administered with Tab. The results showed that Tab significantly inhibit inflammation, myocardial fibrosis, and hypertrophy to prevent heart dysfunction, without the alteration of body weight and hyperlipidemia, in HFD-induced obese mice. H9c2 cells and primary cardiomyocytes stimulated by palmitic acid (PA) were used to explore the molecular mechanism and target of Tab. We examined the effect of Tab on key proteins involved in HFD/PA-induced inflammatory signaling pathway and found that Tab significantly inhibits TAK1 phosphorylation in cardiomyocytes. We further detected the direct interaction between Tab and TAK1 at the cellular, animal, and molecular levels. We found that Tab directly binds to TAK1 to inhibit TAK1 phosphorylation, which then blocks TAK1-TAB2 interaction and then NF-κB pro-inflammatory pathway in cultured cardiomyocytes. Our results indicate that Tab is a potential agent for the treatment of OIC, and TAK1 is an effective therapeutic target for this disease.


Asunto(s)
Inflamación , Quinasas Quinasa Quinasa PAM , Ratones , Animales , Ratones Obesos , Quinasas Quinasa Quinasa PAM/metabolismo , Factores de Crecimiento Transformadores , Obesidad
12.
Cardiovasc Drugs Ther ; 37(6): 1131-1141, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35750941

RESUMEN

PURPOSE: Schisandra is a well-known traditional Chinese medicine in East Asia. As a traditional Chinese medicine derivative with Schisandra chinensis as raw material, bicyclol is well known for its significant anti-inflammatory effect. Chronic inflammation plays a significant part in obesity-induced cardiomyopathy. Our purpose was to explore the effect and mechanism of bicyclol on obesity-induced cardiomyopathy. METHODS: Mice fed with a high-fat diet (HFD) and cardiomyocytes stimulated by palmitic acid (PA) were used as models of obesity-related cardiomyopathy in vivo and in vitro, respectively. The therapeutic effect of bicyclol on pathological changes such as myocardial hypertrophy and fibrosis was evaluated by staining cardiac tissue sections. PCR was used to detect inflammatory factors in H9c2 cells and animal heart tissue after bicyclol treatment. Then, we used western blotting to detect the expression levels of the myocardial hypertrophy related protein, myocardial fibrosis related protein, NF-κB and MAPK pathways. RESULTS: Our results indicated that bicyclol treatment significantly alleviates HFD-induced myocardial inflammation, fibrosis, and hypertrophy by inhibiting the MAPK and NF-κB pathways. Similar to animal level results, bicyclol could significantly inhibit PA-induced inflammation and prevent NF-κB and MAPK pathways from being activated. CONCLUSION: Our results showed that bicyclol has potential as a drug to treat obesity-induced cardiomyopathy.


Asunto(s)
Cardiomiopatías , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Cardiomiopatías/patología , Transducción de Señal , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Miocitos Cardíacos , Cardiomegalia/metabolismo , Inflamación/metabolismo , Fibrosis
13.
Phytomedicine ; 108: 154523, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36332385

RESUMEN

BACKGROUND: Chronic and persistent obesity can lead to various complications, including obesity cardiomyopathy. Inhibition of the inflammatory response is an effective measure for the intervention of obesity cardiomyopathy. Numerous studies indicate that costunolide (Cos) can reduce inflammation. However, the role of Cos in obesity cardiomyopathy and its molecular targets remains unknown. HYPOTHESIS/PURPOSE: We aimed to clarify potential cardioprotective effects and mechanism of Cos against obesity cardiomyopathy. METHODS: The model of obesity cardiomyopathy was established by feeding mice with a high-fat diet for 24 weeks. Cos at 10 and 20 mg/kg or vehicle (1% CMCNa solution) was administered once every two days via oral gavage from the 17th to 24th week. Body weight, heart weight/tibia length, cardiac function, myocardial injury markers, pathological morphology of the heart, hypertrophic and fibrotic markers, inflammatory factors were assessed. The targets of Cos were predicted through molecular docking. Pull-down assay and biolayer interferometry were used to confirm the target of Cos. RESULTS: Cos effectively reduces obesity-induced cardiomyocyte inflammation, cardiac hypertrophy and fibrosis, thereby improving cardiac function. We confirmed that Cos can interact with TAK1 and inhibit downstream NF-κB pathway activation by blocking the formation of the TAK1/TAB2 complex, thus inhibiting inflammatory cytokine release in cardiomyocytes. CONCLUSION: Our results demonstrated that Cos significantly improved myocardial remodeling and cardiac dysfunction against obesity cardiomyopathy by reducing myocardial inflammation. Therefore, Cos may serve as a promising therapeutic agent in obesity cardiomyopathy.


Asunto(s)
Cardiomiopatías , FN-kappa B , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inflamación/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Simulación del Acoplamiento Molecular , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Transducción de Señal
14.
BMC Cardiovasc Disord ; 22(1): 554, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36544106

RESUMEN

BACKGROUND: Acute myocardial infarction (AMI) is one of the leading contributors to morbidity and mortality worldwide, with a prevalence of nearly three million people, and more than one million deaths reported in the United States every year. Gasdermin D (GSDMD) is involved in the development of atherosclerosis as a key protein of proptosis. This study was designed to determine the potential relationship of GSDMD with AMI in Chinese patients. METHODS: One hundred patients with AMI and 50 controls were consecutively enrolled in this prospective observational study. GSDMD expression levels and other clinical variables in peripheral blood mononuclear cells (PBMCs) were measured upon admission to the hospital. All patients were followed up for 360 days, and the endpoint was considered the occurrence of major adverse cardiovascular events (MACE). RESULTS: GSDMD expression levels in the PBMCs of patients with AMI were significantly higher than those in the controls. Moreover, our analysis showed that GSDMD was an independent biomarker of AMI and had a promising diagnostic ability for it. Finally, the results suggested that high expression of GSDMD and diabetes increased the risk of MACE after AMI. CONCLUSIONS: This study indicated that the GSDMD expression level in PBMCs was elevated in AMI patients and was closely associated with the pyroptosis of AMI.


Asunto(s)
Gasderminas , Infarto del Miocardio , Humanos , Biomarcadores , Diabetes Mellitus/metabolismo , Gasderminas/sangre , Gasderminas/metabolismo , Leucocitos Mononucleares , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/metabolismo , Complicaciones de la Diabetes
15.
Genes (Basel) ; 13(11)2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421808

RESUMEN

Pyroptosis serves a crucial function in various types of ischemia and reperfusion injuries. Oridonin, a tetracycline diterpene derived from Rabdosia rubescens, can significantly inhibit the aggregation of NLRP3-mediated inflammasome. This experiment is aimed at investigating the effect of oridonin on pyroptosis in mice cardiomyocytes. Based on the models of myocardial ischemia/reperfusion (I/R) and hypoxia/reoxygenation (H/R), Evans Blue/TTC double staining, TUNEL staining, and Western blotting were applied to determine the effects of oridonin on myocardial damage, cellular activity and signaling pathways involved in pyroptosis. During I/R and H/R treatments, the extent of gasdermin D-N domains was upregulated in cardiomyocytes. Apart from that, oridonin improved cell survival in vitro and decreased the myocardial infarct size in vivo by also downregulating the activation of pyroptosis. Finally, the expression levels of ASC, NLRP3 and p-p65 were markedly upregulated in cardiomyocytes after H/R treatment, whereas oridonin suppressed the expression of these proteins. The present experiment revealed that myocardial I/R injury and pyroptosis can be alleviated and inhibited by oridonin pretreatment via NF-κB/NLRP3 signaling pathway, both in vivo and in vitro. Therefore, oridonin may serve as a potentially novel agent for the clinical treatment of myocardial ischemia-reperfusion injuries.


Asunto(s)
Diterpenos de Tipo Kaurano , Daño por Reperfusión Miocárdica , Piroptosis , Animales , Ratones , Diterpenos de Tipo Kaurano/farmacología , Diterpenos de Tipo Kaurano/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
16.
Chem Biol Interact ; 368: 110195, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36191606

RESUMEN

Coronary heart disease can be effectively prevented by alleviating atherosclerotic plaque progression. Ox-LDL-induced inflammatory response in macrophages is a critical factor in the pathophysiology of atherosclerosis. It is well known that circular RNAs (circRNAs) are associated with the progression of several human diseases, such as coronary artery diseases, by sponging microRNAs (miRNAs), but the function and hidden mechanisms of circRNAs in macrophage inflammation and lipid metabolism remain unclear. In our study, we established an ox-LDL-stimulated macrophage model and used microarray to detect circRNA expression in macrophages. The results revealed distinct profiles of circRNA expression across the ox-LDL-stimulated macrophage group and the control group. Among them, hsa_circ_0007478 was upregulated in ox-LDL-stimulated macrophages, accompanied by reduced miR-765 and increased EFNA3 expression. Activation of NLRP3 inflammasome and IL-1ß in macrophages was decreased following silencing of hsa_circ_0007478 or transfection of miR-765 mimics. In addition, we demonstrated that as a direct target gene of miR-765, the expression of EFNA3 regulated NLRP3 inflammasome and IL-1ß levels in macrophages. Besides, hsa_circ_0007478 promoted EFNA3 expression by acting as a miR-765 sponge. We further showed that hsa_circ_0007478/miR-765/EFNA3 axis could also be involved in the inhibition of the lipid metabolism and foam cells formation in ox-LDL-macrophages. Taken together, these findings suggest that Hsa_circ_0007478 may be a potential molecular target against the inflammatory response and foam cells during atherosclerosis.


Asunto(s)
Aterosclerosis , MicroARNs , Humanos , ARN Circular/genética , Inflamasomas/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Metabolismo de los Lípidos , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , MicroARNs/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Proliferación Celular
17.
Hypertension ; 79(11): 2505-2518, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36065823

RESUMEN

BACKGROUND: Cardiac hypertrophy is initially an adaptive response of cardiomyocytes to neurohumoral or hemodynamic stimuli. Evidence indicates that Ang II (angiotensin II) or pressure overload causes GSDMD (gasdermin D) activation in cardiomyocytes and myocardial tissues. However, the direct impact of GSDMD on cardiac hypertrophy and its underlying mechanisms are not fully understood. METHODS AND RESULTS: In this study, we examined the aberrant activation of GSDMD in mouse and human hypertrophic myocardia, and the results showed that GSDMD deficiency reduced Ang II or pressure overload-induced cardiac hypertrophy, dysfunction, and associated cardiomyocyte pyroptosis in mice. Mechanistically, Ang II-mediated GSDMD cleavage caused mitochondrial dysfunction upstream of STING (stimulator of interferon genes) activation in vivo and in vitro. Activation of STING, in turn, potentiated GSDMD-mediated cardiac hypertrophy. Moreover, deficiency of both GSDMD and STING suppressed cardiac hypertrophy in cardiac-specific GSDMD-overexpressing mice. CONCLUSIONS: Based on these findings, we propose a mechanism by which GSDMD generates a self-amplifying, positive feed-forward loop with the mitochondria-STING axis. This finding points to the prospects of GSDMD as a key therapeutic target for hypertrophy-associated heart diseases.


Asunto(s)
Cardiomegalia , Interferones , Ratones , Humanos , Animales , Interferones/efectos adversos , Interferones/metabolismo , Cardiomegalia/patología , Angiotensina II/farmacología , Miocitos Cardíacos/metabolismo , Mitocondrias/metabolismo , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/efectos adversos , Proteínas de Unión a Fosfato/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
18.
Transl Res ; 248: 36-50, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545198

RESUMEN

Doxorubicin (Dox), as a widely used anthracycline antitumor drug, can cause severe cardiotoxicity. Cardiomyocyte death and inflammation are involved in the pathophysiology of Dox-induced cardiotoxicity (DIC). Gasdermin D (GSDMD) is known as a key executioner of pyroptosis, which is a pro-inflammatory programmed cell death. We aimed to investigate the impact of GSDMD on DIC and systematically reveal its underlying mechanisms. Our findings indicated that Dox induced cardiomyocyte pyroptosis in a GSDMD-dependent manner by utilizing siRNA or overexpression-plasmid technique. We then generated GSDMD global knockout mice via CRISPR/Cas9 system and found that GSDMD deficiency reduced Dox-induced cardiomyopathy. Dox induced the activation of inflammatory caspases, which subsequently mediated GSDMD-N generation indirectly. Using molecular dynamics simulation and cell-free systems, we confirmed that Dox directly bound to GSDMD and facilitated GSDMD-N-mediated pyroptosis. Furthermore, GSDMD also mediated Dox-induced mitochondrial damage via Bnip3 and mitochondrial perforation in cardiomyocytes. These findings provide fresh insights into the mechanism of how Dox-engaged GSDMD orchestrates adverse cardiotoxicity and highlight the prospects of GSDMD as a potential target for DIC.


Asunto(s)
Cardiotoxicidad , Piroptosis , Animales , Doxorrubicina , Ratones , Miocitos Cardíacos
19.
Cardiovasc Ther ; 2022: 3167959, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360548

RESUMEN

Myocardial remodeling is one of the main lesions in the late stage of chronic heart failure and seriously affects the prognosis of patients. Continuous activation of the renin-angiotensin-aldosterone system (RAAS) contributes to the development of myocardial remodeling greatly, and angiotensin II (Ang II), its main constituent, can directly lead to cardiac remodeling through an inflammatory response and oxidative stress. Since Ang II-induced myocardial remodeling is closely related to inflammation, we tried to explore whether the anti-inflammatory drug oridonin (Ori) can reverse this process and its possible mechanism. Our study investigated that hypertrophy and fibrosis can be induced after being treated with Ang II in cardiomyocytes (H9c2 cells and primary rat cardiomyocytes) and C57BL/6J mice. The anti-inflammatory drug oridonin could effectively attenuate the degree of cardiac remodeling both in vivo and vitro by inhibiting GSDMD, a key protein of intracellular inflammation which can further activate kinds of inflammation factors such as IL-1ß and IL-18. We illustrated that oridonin reversed cardiac remodeling by inhibiting the process of inflammatory signaling through GSDMD. After inhibiting the expression of GSDMD in cardiomyocytes by siRNA, it was found that Ang II-induced hypertrophy was attenuated. These results suggest that oridonin is proved to be a potential protective drug against GSDMD-mediated inflammation and myocardial remodeling.


Asunto(s)
Angiotensina II , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Remodelación Ventricular , Animales , Diterpenos de Tipo Kaurano , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Ratas
20.
Front Genet ; 13: 781676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211156

RESUMEN

Cardiac hypertrophy is an adaptive cardiac response that accommodates the variable hemodynamic demands of the human body during extended periods of preload or afterload increase. In recent years, an increasing number of studies have pointed to a potential connection between myocardial hypertrophy and abnormal expression of non-coding RNAs. Circular RNA (circRNA), as one of the non-coding RNAs, plays an essential role in cardiac hypertrophy. However, few studies have systematically analyzed circRNA-related competing endogenous RNA (ceRNA) regulatory networks associated with cardiac hypertrophy. Therefore, we used public databases from online prediction websites to predict and screen differentially expressed mRNAs and miRNAs and ultimately obtained circRNAs related to cardiac hypertrophy. Based on this result, we went on to establish a circRNAs-related ceRNA regulatory network. This study is the first to establish a circRNA-mediated ceRNA regulatory network associated with myocardial hypertrophy. To verify the results of our analysis, we used PCR to verify the differentially expressed mRNAs and miRNAs in animal myocardial hypertrophy model samples. Our findings suggest that three mRNAs (Col12a1, Thbs1, and Tgfbr3), four miRNAs (miR-20a-5p, miR-27b-3p, miR-342-3p, and miR-378a-3p), and four related circRNAs (circ_0002702, circ_0110609, circ_0013751, and circ_0047959) may play a key role in cardiac hypertrophy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...