Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Cell ; 42(2): 209-224.e9, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215748

RESUMEN

Although immunotherapy with PD-(L)1 blockade is routine for lung cancer, little is known about acquired resistance. Among 1,201 patients with non-small cell lung cancer (NSCLC) treated with PD-(L)1 blockade, acquired resistance is common, occurring in >60% of initial responders. Acquired resistance shows differential expression of inflammation and interferon (IFN) signaling. Relapsed tumors can be separated by upregulated or stable expression of IFNγ response genes. Upregulation of IFNγ response genes is associated with putative routes of resistance characterized by signatures of persistent IFN signaling, immune dysfunction, and mutations in antigen presentation genes which can be recapitulated in multiple murine models of acquired resistance to PD-(L)1 blockade after in vitro IFNγ treatment. Acquired resistance to PD-(L)1 blockade in NSCLC is associated with an ongoing, but altered IFN response. The persistently inflamed, rather than excluded or deserted, tumor microenvironment of acquired resistance may inform therapeutic strategies to effectively reprogram and reverse acquired resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Transducción de Señal , Inmunoterapia , Presentación de Antígeno , Antígeno B7-H1/metabolismo , Microambiente Tumoral
2.
Genes Dev ; 37(13-14): 605-620, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536952

RESUMEN

The transcription factor RUNX1 is mutated in familial platelet disorder with associated myeloid malignancy (FPDMM) and in sporadic myelodysplastic syndrome and leukemia. RUNX1 was shown to regulate inflammation in multiple cell types. Here we show that RUNX1 is required in granulocyte-monocyte progenitors (GMPs) to epigenetically repress two inflammatory signaling pathways in neutrophils: Toll-like receptor 4 (TLR4) and type I interferon (IFN) signaling. RUNX1 loss in GMPs augments neutrophils' inflammatory response to the TLR4 ligand lipopolysaccharide through increased expression of the TLR4 coreceptor CD14. RUNX1 binds Cd14 and other genes encoding proteins in the TLR4 and type I IFN signaling pathways whose chromatin accessibility increases when RUNX1 is deleted. Transcription factor footprints for the effectors of type I IFN signaling-the signal transducer and activator of transcription (STAT1::STAT2) and interferon regulatory factors (IRFs)-were enriched in chromatin that gained accessibility in both GMPs and neutrophils when RUNX1 was lost. STAT1::STAT2 and IRF motifs were also enriched in the chromatin of retrotransposons that were derepressed in RUNX1-deficient GMPs and neutrophils. We conclude that a major direct effect of RUNX1 loss in GMPs is the derepression of type I IFN and TLR4 signaling, resulting in a state of fixed maladaptive innate immunity.


Asunto(s)
Neutrófilos , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Monocitos/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Citocinas/metabolismo , Cromatina/metabolismo , Factor de Transcripción STAT1/metabolismo
3.
bioRxiv ; 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36747636

RESUMEN

The transcription factor RUNX1 is mutated in familial platelet disorder with associated myeloid malignancies (FPDMM) and in sporadic myelodysplastic syndrome and leukemia. RUNX1 regulates inflammation in multiple cell types. Here we show that RUNX1 is required in granulocyte-monocyte progenitors (GMPs) to restrict the inflammatory response of neutrophils to toll-like receptor 4 (TLR4) signaling. Loss of RUNX1 in GMPs increased the TLR4 coreceptor CD14 on neutrophils, which contributed to neutrophils’ increased inflammatory cytokine production in response to the TLR4 ligand lipopolysaccharide. RUNX1 loss increased the chromatin accessibility of retrotransposons in GMPs and neutrophils and induced a type I interferon signature characterized by enriched footprints for signal transducer and activator of transcription (STAT1::STAT2) and interferon regulatory factors (IRF) in opened chromatin, and increased expression of interferon-stimulated genes. The overproduction of inflammatory cytokines by neutrophils was reversed by inhibitors of type I IFN signaling. We conclude that RUNX1 restrains the chromatin accessibility of retrotransposons in GMPs and neutrophils, and that loss of RUNX1 increases proinflammatory cytokine production by elevating tonic type I interferon signaling.

4.
Nat Cancer ; 4(1): 43-61, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36646856

RESUMEN

Prolonged interferon (IFN) signaling in cancer cells can promote resistance to immune checkpoint blockade (ICB). How cancer cells retain effects of prolonged IFN stimulation to coordinate resistance is unclear. We show that, across human and/or mouse tumors, immune dysfunction is associated with cancer cells acquiring epigenetic features of inflammatory memory. Here, inflammatory memory domains, many of which are initiated by chronic IFN-γ, are maintained by signal transducer and activator of transcription (STAT)1 and IFN regulatory factor (IRF)3 and link histone 3 lysine 4 monomethylation (H3K4me1)-marked chromatin accessibility to increased expression of a subset of IFN-stimulated genes (ISGs). These ISGs include the RNA sensor OAS1 that amplifies type I IFN (IFN-I) and immune inhibitory genes. Abrogating cancer cell IFN-I signaling restores anti-programmed cell death protein 1 (PD1) response by increasing IFN-γ in immune cells, promoting dendritic cell and CD8+ T cell interactions, and expanding T cells toward effector-like states rather than exhausted states. Thus, cancer cells acquire inflammatory memory to augment a subset of ISGs that promote and predict IFN-driven immune dysfunction.


Asunto(s)
Interferón Tipo I , Neoplasias , Animales , Humanos , Ratones , Memoria Epigenética , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interferón Tipo I/metabolismo , Interferón Tipo I/farmacología , Interferón gamma/genética , Interferón gamma/metabolismo , Interferón gamma/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Transducción de Señal , Linfocitos T/inmunología
5.
Cell ; 184(19): 4981-4995.e14, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34464586

RESUMEN

Poor tumor infiltration, development of exhaustion, and antigen insufficiency are common mechanisms that limit chimeric antigen receptor (CAR)-T cell efficacy. Delivery of pattern recognition receptor agonists is one strategy to improve immune function; however, targeting these agonists to immune cells is challenging, and off-target signaling in cancer cells can be detrimental. Here, we engineer CAR-T cells to deliver RN7SL1, an endogenous RNA that activates RIG-I/MDA5 signaling. RN7SL1 promotes expansion and effector-memory differentiation of CAR-T cells. Moreover, RN7SL1 is deployed in extracellular vesicles and selectively transferred to immune cells. Unlike other RNA agonists, transferred RN7SL1 restricts myeloid-derived suppressor cell (MDSC) development, decreases TGFB in myeloid cells, and fosters dendritic cell (DC) subsets with costimulatory features. Consequently, endogenous effector-memory and tumor-specific T cells also expand, allowing rejection of solid tumors with CAR antigen loss. Supported by improved endogenous immunity, CAR-T cells can now co-deploy peptide antigens with RN7SL1 to enhance efficacy, even when heterogenous CAR antigen tumors lack adequate neoantigens.


Asunto(s)
Factores Inmunológicos/farmacología , ARN/farmacología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Antígenos/metabolismo , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Proteína 58 DEAD Box/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Inmunidad/efectos de los fármacos , Inmunocompetencia , Memoria Inmunológica , Inmunoterapia , Interferones/metabolismo , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Péptidos/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Linfocitos T/efectos de los fármacos
6.
Mol Cancer Res ; 19(8): 1283-1295, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33931487

RESUMEN

Pancreatic cancer is characterized by aberrant activity of oncogenic KRAS, which is mutated in 90% of pancreatic adenocarcinomas. Because KRAS itself is a challenging therapeutic target, we focused on understanding key signaling pathways driven by KRAS as a way to reveal dependencies that are amenable to therapeutic intervention. Analyses in primary human pancreatic cancers and model systems revealed that the receptor for the cytokine leukemia inhibitory factor (LIF) is downregulated by mutant KRAS. Furthermore, downregulation of the LIF receptor (LIFR) is necessary for KRAS-mediated neoplastic transformation. We found LIFR exerts inhibitory effects on KRAS-mediated transformation by inhibiting expression of the glucose transporter GLUT1, a key mediator of the enhanced glycolysis found in KRAS-driven malignancies. Decreased LIFR expression leads to increased GLUT1 as well as increases in glycolysis and mitochondrial respiration. The repression of GLUT1 by LIFR is mediated by the transcription factor STAT3, indicating a tumor-suppressive role for STAT3 within cancer cells with mutated KRAS. Finally, reflecting a clinically important tumor-suppressive role of LIFR, decreased LIFR expression correlates with shorter survival in pancreatic cancer patients with mutated KRAS. Similar findings were found in non-small cell lung cancers driven by mutated KRAS, suggesting that silencing LIFR is a generalized mechanism of KRAS-mediated cellular transformation. These results indicate that the LIFR/STAT3 pathway may mediate either tumor-promoting or tumor-suppressive signaling pathways depending on the genetic background of tumor cells, and may play diverse roles within other cells in the tumor microenvironment. IMPLICATIONS: Mutant KRAS drives downregulation of the receptor for LIF, thereby allowing an increase in expression of the glucose transporter GLUT1 and increases in glycolysis and mitochondrial respiration.


Asunto(s)
Regulación hacia Abajo/genética , Glucólisis/genética , Factor Inhibidor de Leucemia/genética , Neoplasias Pulmonares/genética , Mutación/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Línea Celular , Línea Celular Tumoral , Humanos , Ratones , Células 3T3 NIH , Factor de Transcripción STAT3/genética , Transducción de Señal/genética
7.
Cell ; 178(4): 933-948.e14, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398344

RESUMEN

Interferon-gamma (IFNG) augments immune function yet promotes T cell exhaustion through PDL1. How these opposing effects are integrated to impact immune checkpoint blockade (ICB) is unclear. We show that while inhibiting tumor IFNG signaling decreases interferon-stimulated genes (ISGs) in cancer cells, it increases ISGs in immune cells by enhancing IFNG produced by exhausted T cells (TEX). In tumors with favorable antigenicity, these TEX mediate rejection. In tumors with neoantigen or MHC-I loss, TEX instead utilize IFNG to drive maturation of innate immune cells, including a PD1+TRAIL+ ILC1 population. By disabling an inhibitory circuit impacting PD1 and TRAIL, blocking tumor IFNG signaling promotes innate immune killing. Thus, interferon signaling in cancer cells and immune cells oppose each other to establish a regulatory relationship that limits both adaptive and innate immune killing. In melanoma and lung cancer patients, perturbation of this relationship is associated with ICB response independent of tumor mutational burden.


Asunto(s)
Inmunidad Adaptativa/inmunología , Inmunidad Innata/inmunología , Interferón gamma/genética , Interferón gamma/metabolismo , Neoplasias Pulmonares/inmunología , Melanoma/inmunología , Traslado Adoptivo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Antígeno CTLA-4/antagonistas & inhibidores , Línea Celular Tumoral , Estudios de Cohortes , Femenino , Técnicas de Inactivación de Genes , Humanos , Interferón gamma/antagonistas & inhibidores , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Supervivencia sin Progresión , RNA-Seq , Transfección
8.
Blood Adv ; 2(23): 3428-3442, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30504235

RESUMEN

To identify novel therapeutic targets in acute myeloid leukemia (AML), we examined kinase expression patterns in primary AML samples. We found that the serine/threonine kinase IKBKE, a noncanonical IkB kinase, is expressed at higher levels in myeloid leukemia cells compared with normal hematopoietic cells. Inhibiting IKBKE, or its close homolog TANK-binding kinase 1 (TBK1), by either short hairpin RNA knockdown or pharmacological compounds, induces apoptosis and reduces the viability of AML cells. Using gene expression profiling and gene set enrichment analysis, we found that IKBKE/TBK1-sensitive AML cells typically possess an MYC oncogenic signature. Consistent with this finding, the MYC oncoprotein was significantly downregulated upon IKBKE/TBK1 inhibition. Using proteomic analysis, we found that the oncogenic gene regulator YB-1 was activated by IKBKE/TBK1 through phosphorylation, and that YB-1 binds to the MYC promoter to enhance MYC gene transcription. Momelotinib (CYT387), a pharmacological inhibitor of IKBKE/TBK1, inhibits MYC expression, reduces viability and clonogenicity of primary AML cells, and demonstrates efficacy in a murine model of AML. Together, these data identify IKBKE/TBK1 as a promising therapeutic target in AML.


Asunto(s)
Quinasa I-kappa B/metabolismo , Leucemia Mieloide Aguda/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Animales , Apoptosis/efectos de los fármacos , Benzamidas/farmacología , Benzamidas/uso terapéutico , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Ratones Endogámicos NOD , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal
9.
Blood ; 128(14): 1845-1853, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27531676

RESUMEN

The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is frequently activated inappropriately in a wide range of hematological and solid cancers, but clinically available therapies targeting STAT3 are lacking. Using a computational strategy to identify compounds opposing the gene expression signature of STAT3, we discovered atovaquone (Mepron), an antimicrobial approved by the US Food and Drug Administration, to be a potent STAT3 inhibitor. We show that, at drug concentrations routinely achieved clinically in human plasma, atovaquone inhibits STAT3 phosphorylation, the expression of STAT3 target genes, and the viability of STAT3-dependent hematological cancer cells. These effects were also observed with atovaquone treatment of primary blasts isolated from patients with acute myelogenous leukemia or acute lymphocytic leukemia. Atovaquone is not a kinase inhibitor but instead rapidly and specifically downregulates cell-surface expression of glycoprotein 130, which is required for STAT3 activation in multiple contexts. The administration of oral atovaquone to mice inhibited tumor growth and prolonged survival in a murine model of multiple myeloma. Finally, in patients with acute myelogenous leukemia treated with hematopoietic stem cell transplantation, extended use of atovaquone for Pneumocystis prophylaxis was associated with improved relapse-free survival. These findings establish atovaquone as a novel, clinically accessible STAT3 inhibitor with evidence of anticancer efficacy in both animal models and humans.


Asunto(s)
Antineoplásicos/farmacología , Atovacuona/farmacología , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Atovacuona/química , Atovacuona/uso terapéutico , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Receptor gp130 de Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Factor de Transcripción STAT3/metabolismo , Resultado del Tratamiento
10.
Oncotarget ; 7(29): 46301-46314, 2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-27317770

RESUMEN

One cause of morbidity and mortality in chronic lymphocytic leukemia (CLL) is infection, which results from defects in a number of components of the immune system. In particular, dendritic cells (DCs) are functionally defective in patients with CLL. To understand the molecular mechanism for this abnormality, we focused on signal transduction pathways that regulate the function of monocyte-derived dendritic cells (Mo-DCs). Monocytes from CLL patients exhibit high IL-4Rα expression due to the enhanced activation of STAT3. However, IL-4R signaling is decoupled from activation of its downstream mediator STAT6 by enhanced levels of the negative regulator SOCS5. This impairs differentiation of functionally mature DCs leading to decreased expression of HLA-DR and costimulatory molecules, and reduced secretion of pro-inflammatory cytokines in LPS-activated DCs. Moreover, Mo-DCs from CLL patients display a decreased ability to induce pro-inflammatory T-cell responses. IL-10-treatment of monocytes from healthy donors mimics the alteration in signaling observed in CLL patients, through enhanced STAT3-dependent expression of SOCS5. The higher level of SOCS5 inhibits STAT6 activation and leads to defective DC differentiation. These findings indicate that SOCS5 mediates the impaired function of DCs in CLL patients, and has the potential to be a new therapeutic target for reversing cancer-associated immune suppression.


Asunto(s)
Células Dendríticas/inmunología , Leucemia Linfocítica Crónica de Células B/inmunología , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Diferenciación Celular/inmunología , Células Dendríticas/metabolismo , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...