Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 638: 184-192, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738543

RESUMEN

A rational design of the structure of catalyst layer (CL) is required for proton exchange membrane fuel cells to attain outstanding performance and excellent stability. It is crucial to have a profound comprehension of the correlations existing between the properties (catalyst ink), network structures of CL and proton exchange membrane fuel cells' performance for the rational design of the structure of CL. This study deeply investigates the effects of a series of alcohol solvents on the properties and network structure of CL. The results demonstrate that the CL aggregates in higher ε solution show smaller particle sizes, and the sulfonic acid groups (∼SO3H) tend to extend more outward due to the strong dissociation. A more continuous and homogeneous ionomer distribution around Pt/C aggregates is observed in the CL, which improves the electrochemically active surface area (ECSA) and performance of the electrode. But, the electrode has a poor performance at high current density regions due to the mass transfer resistance. Based on this, a two-step solvent control strategy is proposed to maintain uniform ionomer and aggerates distribution and optimize the mass transfer for CL. The performance of the cell improves from 0.555 V to 0.615 V at 2000 mA·cm-2.


Asunto(s)
Protones , Grupo Social , Membrana Celular , Electrodos , Etanol , Polímeros , Solventes
2.
Nanoscale ; 14(39): 14322-14340, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36106572

RESUMEN

The massive exploitation and use of fossil resources have created many negative issues, such as energy shortage and environmental pollution. It prompts us to turn our attention to the development of new energy technologies. This review summarizes the recent research progress of non-precious transition metal single-atom catalysts (NPT-SACs) for the oxygen reduction reaction (ORR) in Zn-air batteries and fuel cells. Some commonly used preparation methods and their advantages/disadvantages have been summarized. The factors affecting the ORR performances of NPT-SACs have been focused upon, such as the substrate type, coordination environment and nanocluster effects. The loading mass of a metal atom has a direct effect on the ORR performances. Some general strategies for stabilizing metal atoms are included. This review points out some existing challenges of NPT-SACs, and also provides ideas for designing and synthesizing NPT-SACs with excellent ORR performances. The large-scale preparation and commercialization of NPT-SACs with excellent ORR properties are prospected.

3.
Molecules ; 27(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36144758

RESUMEN

Fragrances have been widely used in many customer products to improve the sensory quality and cover flavor defects. The key to the successful application of fragrance is to realize controlled fragrance release, which relies on the use of an appropriate carrier for fragrance. An ideal fragrance carrier helps to achieve the stable storage and controlled release of fragrance. In this work, a novel composite fragrance carrier with MIL-101 (Cr) as the fragrance host and cellulose acetate fiber (CAF) as the protective shell was developed. The encapsulation effect of MIL-101 (Cr) and the protective function of the CAF shell significantly improved the storage stability of L-menthol (LM). Only 5 wt % of LM was lost after 40 days of storage at room temperature. Encapsulated LM could also be effectively released upon heating due to the thermal responsiveness of CAF. In addition, the composite carrier was highly stable with neglectable Cr leaching under different conditions. The results of this work showed that the developed composite carrier could be a promising carrier for the thermally triggered release of fragrance.


Asunto(s)
Estructuras Metalorgánicas , Perfumes , Acetatos , Celulosa/análogos & derivados , Preparaciones de Acción Retardada , Mentol , Terpenos
4.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35957050

RESUMEN

Electrochemical water splitting has wide applicability in preparing high-density green energy. The Proton exchange membrane (PEM) water electrolysis system is a promising technique for the generation of hydrogen due to its high electrolytic efficiency, safety and reliability, compactness, and quick response to renewable energy sources. However, the instability of catalysts for electrochemical water splitting under operating conditions limits their practical applications. Until now, only precious metal-based materials have met the requirements for rigorous long-term stability and high catalytic activity under acid conditions. In this review, the recent progress made in this regard is presented and analyzed to clarify the role of precious metals in the promotion of the electrolytic decomposition of water. Reducing precious metal loading, enhancing catalytic activity, and improving catalytic lifetime are crucial directions for developing a new generation of PEM water electrolysis catalysts. A summary of the synthesis of high-performance catalysts based on precious metals and an analysis of the factors affecting catalytic performance were derived from a recent investigation. Finally, we present the remaining challenges and future perspectives as guidelines for practical use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...