Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-33101436

RESUMEN

Morinda officinalis F.C. How. (Rubiaceae) is a herbal medicine. It has been recorded that its oligosaccharides have neuroprotective properties. In order to understand the oligosaccharides extracted from Morinda officinalis (OMO), a systematic study was conducted to provide evidence that supports its use in neuroprotective therapies for Alzheimer's disease (AD). AD rat models were prepared with D-galactose and Aß 25-35. The following groups were used in the present experiment: normal control group, sham-operated group, model group, Aricept group, OMO low-dose group, OMO medium-dose group, and OMO high-dose group. The effects on behavioral tests, antioxidant levels, energy metabolism, neurotransmitter levels, and AD-related proteins were detected with corresponding methodologies. AD rats administered with different doses of OMO all exhibited a significant (P < 0.05) decrease in latency and an increase (P < 0.05) in the ratio of swimming distance to total distance in a dose-dependent manner in the Morris water maze. There was a significant (P < 0.05) increase in antioxidant enzyme activities (SOD, GSH-Px, and CAT), neurotransmitter levels (acetylcholine, γ-GABA, and NE and DA), energy metabolism (Na+/K+-ATPase), and relative synaptophysin (SYP) expression levels in AD rats administered with OMO. Furthermore, there was a significant (P < 0.05) decrease in MDA levels and relative expression levels of APP, tau, and caspase-3 in AD rats with OMO. The present research suggests that OMO protects against D-galactose and Aß 25-35-induced neurodegeneration, which may provide a novel strategy for improving AD in clinic.

2.
Med Biol Eng Comput ; 58(11): 2821-2833, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32954459

RESUMEN

Cardiac electrophysiological simulation is a very complex computational process, which can be run on graphics processing unit (GPU) to save computational cost greatly. The use of adaptive time-step can further effectively speed up the simulation of heart cells. However, if the adaptive time-step method applies to GPU, it suffers synchronization problem on GPU, weakening the acceleration of adaptive time-step method. The previous work ran on a single GPU with the adaptive time-step to get only 1.5 times (× 1.5) faster than the fixed time-step. This study proposes a memory allocation method, which can effectively implement the adaptive time-step method on GPU. The proposed method mainly focuses on the stimulus point and potential memory arrangement in order to achieve optimal memory storage efficiency. All calculation is implemented on GPU. Large matrices such as potential are arranged in column order, and the cells on the left are stimulated. The Luo-Rudy passive (LR1) and dynamic (LRd) ventricular action potential models are used with adaptive time-step methods, such as the traditional hybrid method (THM) and Chen-Chen-Luo's (CCL) "quadratic adaptive algorithm" method. As LR1 is solved by the THM or CCL on a single GPU, the acceleration is × 34 and × 75 respectively compared with the fixed time-step. With 2 or 4 GPUs, the acceleration of the THM and CCL is × 34 or × 35 and × 73 or × 75, but it would decrease to × 5 or × 3 and × 20 or × 15 without optimization. In an LRd model, the acceleration reaches × 27 or × 85 as solved by the THM or CCL compared with the fixed time-step on multi-GPU with linear speed up increase versus the number of GPU. However, with the increase of GPUs number, the acceleration of the THM and CCL is continuously weakened before optimization. The mixed root mean square error (MRMSE) lower than 5% is applied to ensure the accuracy of simulation. The result shows that the proposed memory arrangement method can save computational cost a lot to speed up the heart simulation greatly. Graphical abstract Acceleration ratio compared with CPU with fixed time-step (dt = 0.001 ms).


Asunto(s)
Simulación por Computador , Modelos Cardiovasculares , Miocardio/citología , Gráficos por Computador , Corazón/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA