Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Se Pu ; 41(4): 289-301, 2023 Apr.
Artículo en Chino | MEDLINE | ID: mdl-37005916

RESUMEN

Effervescence-assisted microextraction (EAM) is a novel sample pretreatment method based on the reaction of CO2 and H+ donors to generate CO2 bubbles and promote rapid dispersion of the extractant. During this process, the unique dispersion method increases the contact area between the target molecule and the extraction solvent, and the adsorption/extraction efficiency of the adsorbent/extractant toward the target molecule is also enhanced. The EAM technique is of particular interest due its convenient application, low running costs, reduced solvent consumption, high extraction efficiency, and environmental friendliness. Benefiting from the rapid development of extractants, the evolution and application of the EAM technology is becoming more tuned and diversified. Indeed, the synthesis of new extractants, such as nanomaterials with multi-pore structures, large specific surface areas, and rich active sites, has attracted extensive attention, as has the development of ionic liquids with strong extraction abilities and high selectivities. As a result, the EAM technology has been widely applied to the pretreatment of target compounds in various samples, such as food, plant, biological, and environmental samples. However, since these samples often contain polysaccharides, peptides, proteins, inorganic salts, and other interfering substrates, it is necessary to remove some of these substances prior to extraction by EAM. This is commonly achieved using methods such as vortexing, centrifugation, and dilution, among others. The treated samples can then be extracted using the EAM method prior to detection using high performance liquid chromatography (HPLC), gas chromatography (GC), and atomic absorption spectroscopy (AAS) to detect substances such as heavy metal ions, pesticide residues, endocrine-disrupting compounds (EDCs), and antibiotics. Using effervescence as a novel assisted method for the dispersion of solvents or adsorbents, the concentrations of Pb2+, Cd2+, Ni2+, Cu2+, bisphenol, estrogen, and the pyrethyl pesticides have previously been successfully determined. Moreover, many influencing factors have been evaluated during method development, including the composition of the effervescent tablet, the solution pH, the extraction temperature, the type and mass/volume of extractant, the type of eluent, the eluent concentration, the elution time, and the regeneration performance. Generally, the cumbersome single factor optimization and multi-factor optimization methods are also required to determine the optimal experimental conditions. Following determination of the optimal experimental conditions, the EAM method was validated by a series of experimental parameters including the linear range, the correlation coefficient (R2), the enrichment factor (EF), the limit of detection (LOD), and the limit of quantification (LOQ). In addition, the use of this method has been demonstrated in actual sample testing, and the obtained results have compared with those achieved using similar detection systems and methods to ultimately determine the accuracy, feasibility, and superiority of the developed method. In this paper, the construction of an EAM method based on nanomaterials, ionic liquids, and other emerging extractants is reviewed, wherein the preparation method, application range, and comparison of similar extractants were evaluated for the same extraction system. In addition, the current state-of-the-art in relation to EAM research and application when combined with HPLC, cold flame AAS, and other analytical techniques is summarized in terms of the detection of harmful substances in complex matrices. More specifically, the samples evaluated herein include dairy products, honey, beverages, surface water, vegetables, blood, urine, liver, and complex botanicals. Furthermore, issues related to the application of this technology are analyzed, and its future development trend in the field of microextraction is forecasted. Finally, the application prospects of EAM in the analysis of various pollutants and components are proposed to provide reference for monitoring pollutants in food, environmental, and biological samples.

2.
Se Pu ; 40(12): 1049-1063, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36450345

RESUMEN

Herein, we successfully prepared magnetic Co/Ni-based N-doped 3D carbon nanotubes and graphene nanocomposites (CoNi@NGC) using a simple high-temperature calcination method. The CoNi@NGC nanocomposites were used as adsorbents to study their adsorption performances and underlying kinetic mechanisms for six types of bisphenol compounds (BPs) in water. They were also used as extractants, and acid-base effervescent tablets were used to enhance extractant dispersion with the aid of vigorous CO2 bubbling. Thus, a novel pretreatment method was developed, denoted effervescent reaction-assisted dispersive solid-phase microextraction (ER-DSM), which was combined with high performance liquid chromatography-fluorescence detection (HPLC-FLD) to rapidly quantify trace-level BPs in several drinks. The morphology and structure of the CoNi@NGC adsorbent were characterized in detail using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption and desorption (BET-BJH), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM). The CoNi@NGC nanocomposites were successfully doped with N and exhibited large specific surface areas (109.42 m2/g), abundant pores, and strong magnetic properties (17.98 emu/g).Key parameters were rigorously optimized to maximize the adsorption performance of CoNi@NGC, including adsorbent dosage, solution pH, temperature, and time. Under the constant conditions of pH=7, 5 mg of CoNi@NGC, initial BP concentrations of 5 mg/L, and 5 min of shaking at 298 K, the adsorption percentages of bisphenol M (BPM) and bisphenol A (BPA) reached respective maxima of 99.01% and 98.21%. Remarkably, those of bisphenol Z (BPZ), BPA, and BPM reached almost 100% after 90 min. The adsorption between the BPs and CoNi@NGC was mainly governed by hydrogen bonds, electrostatic interactions, and π-π conjugation. The entire adsorption process was consistent with Freundlich adsorption and a quasi-second-order kinetic equation, representing spontaneous adsorption. Via integration with HPLC-FLD, ER-DSM was used to rapidly extract and analyze trace-level BPs in six types of boxed drinks. Critical factors were optimized individually, including the type of eluent and elution time and volume, which influenced the enrichment effect. Under the optimized extraction conditions (pH=7, 5 mg CoNi@NGC, elution with 2 mL acetone for 6 min), the limits of detection and quantification of the novel extraction method were 0.06-0.20 and 0.20-0.66 µg/L, respectively. The intra- and inter-day precisions spanned the ranges 1.44%-4.76% and 1.69%-5.36%, respectively, and the recoveries in the actual samples were in the range 82.4%-103.7%. Moreover, the respective residual levels of BPA and BPB in peach juice samples were 2.09 and 1.37 µg/L. Regeneration studies revealed that the CoNi@NGC adsorbent could be reused at least five times, which significantly reduced the cost of evaluation. In summary, compared to other methods, this method displays the advantages of a high sensitivity, rapid extraction, and environmental friendliness, thereby exhibiting considerable potential for use in conventional monitoring of trace-level BPs in food matrices.


Asunto(s)
Grafito , Nanocompuestos , Nanotubos de Carbono , Adsorción , Nitrógeno , Espectroscopía Infrarroja por Transformada de Fourier , Fenómenos Magnéticos
3.
RSC Adv ; 12(32): 20838-20849, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35919163

RESUMEN

Traditional bimetallic sulfide-based nanomaterials often have a small specific surface area (SSA), low dispersion, and poor conductivity, thereby limiting their wide applications in the nanozyme-catalytic field. To address the above issues, we herein integrated NiCo2S4 with N,S-rGO to fabricate a nanocomposite (NiCo2S4@N,S-rGO), which showed a stronger peroxidase-mimetic activity than its pristine components. The SSA (155.8 m2 g-1) of NiCo2S4@N,S-rGO increased by ∼2-fold compared to NiCo2S4 with a pore size of 7-9 nm, thus providing more active sites and charge transfer channels. Based on the Michaelis-Menten equation, the affinity of this nanocomposite increased 40% and 1.1∼10.6-fold compared with NiCo2S4 with N,S-rGO, respectively, highlighting the significant enhancement of the peroxidase-like activity. The enhanced activity of this nanocomposite is derived from the joint participation of ˙OH, ˙O2 -, and photogenerated holes (h+), and was dominated by h+. To sum up, N,S-codoping, rich S-vacancies, and multi-valence states for this nanocomposite facilitate electron transfer and accelerate reaction processes. The nanocomposite-based colorimetric sensor gave low detection limits for H2O2 (12 µM) and glucose (0.3 µM). In comparison with the results detected by a common glucose meter, this sensor provided the relative recoveries across the range of 97.4-101.8%, demonstrating its high accuracy. Moreover, it exhibited excellent selectivity for glucose assay with little interference from common co-existing macromolecules/ions, as well as high reusability (>6 times). Collectively, the newly developed colorimetric sensor yields a promising methodology for practical applications in H2O2 and glucose detection with advantages of highly visual resolution, simple operation, convenient use, and satisfactory sensitivity.

4.
Anal Chim Acta ; 1204: 339703, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35397915

RESUMEN

We fabricated a novel N,S-co-doped carbon/Co1-xS nanocomposite (NSC/Co1-xS) using a facile sol-gel approach, which featured a multiporous structure, abundant S vacancies and Co-S nanoparticles filling the carbon-layer pores. When the Co1-xS nanoparticles were anchored onto the surface of N,S-co-doped carbon, a synergistic catalysis action occurred. The NSC/Co1-xS nanocomposites possessed both peroxidase-like and oxidase-mimetic dual-enzyme activities, in which the oxidase-mimetic activity dominated. By scavenger capture tests, the nanozyme was demonstrated to catalyze H2O2 to produce h+, •OH and •O2-, among which the strongest and weakest signals were h+ and •OH, respectively. The multi-valence states of Co atoms in the NSC/Co1-xS structure facilitated electronic transfer that enhanced redox reactions, thereby improving the resultant color reaction. Based on the NSC/Co1-xS's enzyme-mimetic catalytic reaction, a visual colorimetric assay and Android "Thing Identify" application (app), installed on a smartphone, offered detection limits of 1.93 and 2.51 mg/dl, respectively, in human serum samples. The selectivity/interference experiments, using fortified macromolecules and metal ions, demonstrated that this sensor had high selectivity and low interference potential for cholesterol analysis. Compared to standard assay kits and previously reported visual detection, the Android smartphone-based assays provided higher accuracy (recoveries up to 93.6-104.1%), feasibility for trace-level detection, and more convenient on-site application for cholesterol assay due to the superior enzymatic activity of NSC/Co1-xS. These compelling performance metrics lead us to posit that the NSC/Co1-xS-based nanozymic sensor offers a promising methodology for several practical applications, such as point-of-care diagnosis and workplace health evaluations.


Asunto(s)
Colorimetría , Nanocompuestos , Carbono/química , Colesterol , Colorimetría/métodos , Humanos , Peróxido de Hidrógeno/análisis , Nanocompuestos/química , Oxidorreductasas , Teléfono Inteligente
5.
ACS Nano ; 16(1): 1502-1510, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35012309

RESUMEN

Potassium ion hybrid capacitors (KICs) have drawn tremendous attention for large-scale energy storage applications because of their high energy and power densities and the abundance of potassium sources. However, achieving KICs with high capacity and long lifespan remains challenging because the large size of potassium ions causes sluggish kinetics and fast structural pulverization of electrodes. Here, we report a composite anode of VO2-V2O5 nanoheterostructures captured by a 3D N-doped carbon network (VO2-V2O5/NC) that exhibits a reversible capacity of 252 mAh g-1 at 1 A g-1 over 1600 cycles and a rate performance with 108 mAh g-1 at 10 A g-1. Quantitative kinetics analyses demonstrate that such great rate capability and cyclability are enabled by the capacitive-dominated potassium storage mechanism in the interfacial engineered VO2-V2O5 nanoheterostructures. The further fabricated full KIC cell consisting of a VO2-V2O5/NC anode and an active carbon cathode delivers a high operating voltage window of 4.0 V and energy and power densities up to 154 Wh kg-1 and 10 000 W kg-1, respectively, surpassing most state-of-the-art KICs.

6.
J Sep Sci ; 44(24): 4313-4326, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34661968

RESUMEN

To simultaneously and efficiently extract pollutants with differential polarities, we herein fabricated and characterized a multifunctional nanocomposite. The novel nanohybrids used NiFe2 O4 as magnetic cores, and NH2 -MIL-101(Al), ß-cyclodextrin and graphene oxide as functional components combined with magnetic cores. With the aid of graphene oxide's large π-conjugated system, NH2 -MIL-101(Al)'s strong adsorption to moderately/strongly polar chemicals, and ß-cyclodextrin's specific recognition effect, the nanohybrids realized synergistically efficient extraction of polyaromatic hydrocarbons and bisphenols with a logKow range of 3-6. Combined with acidic and alkaline sources, the nanohybrids-based effervescent tablets were prepared. Based on effervescent reaction-enhanced nanohybrids-based efficient adsorption/extraction and high performance liquid chromatography and fluorescence detection, we successfully developed an excellent microextraction method for the simultaneous determination of both polyaromatic hydrocarbons and bisphenols in roasted meat samples. Several important variables were optimized as follows: Na2 CO3 and tartaric acid as acidic and alkaline sources, 900 µLof the mixed solvent (acetone and hexane at 2:1 by v/v) as the eluent, 5 min of elution time. Under optimized conditions, the novel method gave low limits of detection (0.07-0.30 µg kg-1 ), satisfactory recoveries (86.9-103.9%), and high precision (relative standard deviations of 1.9-6.7%) in roasted lamb, beef, pork, chicken, and sausage samples.


Asunto(s)
Contaminación de Alimentos/análisis , Magnetismo , Productos de la Carne/análisis , Nanoestructuras , Compuestos Orgánicos/aislamiento & purificación , Microextracción en Fase Sólida/métodos , Compuestos de Bencidrilo/aislamiento & purificación , Cromatografía Líquida de Alta Presión/métodos , Límite de Detección , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Fenoles/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Espectrometría de Fluorescencia/métodos
7.
Food Chem ; 283: 191-198, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30722861

RESUMEN

A label-free fluorescence assay for resveratrol determination is presented for the first time. The approach was based on fluorescence resonance energy transfer (FRET), via competitive supramolecular recognition, between p-sulfonated calix[6]arene (CX6)-modified reduced graphene oxide (CX6@RGO) and a probe-resveratrol complex. The probe molecule (Rhodamine B or rhodamine 123) had a strong fluorescence signal, and its fluorescence was quenched by CX6@RGO, based on FRET. When the target molecule was added to CX6@RGO, the probe molecule was displaced by resveratrol, and a host-guest complex, CX6@RGO-resveratrol formed, turning-on the fluorescence signal. Fluorescence intensity of the CX6@RGO-probe complex increased linearly with increased resveratrol concentrations (2.0-40.0 µM). The proposed approach was used to determine resveratrol in red wine with satisfactory detection limits and recoveries. Compared with traditional determination methods, our procedure is advantageous because it saves time, is easy to operate, and does not require sample pretreatment.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Resveratrol/análisis , Vino/análisis , Fluorescencia , Grafito , Límite de Detección , Óxidos
8.
Biosens Bioelectron ; 89(Pt 1): 361-369, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27436432

RESUMEN

The present work described the comparison of ß-cyclodextrin (ß-CD) and p-sulfonated calix[6]arene (SCX6) functionalized reduced graphene oxide (RGO) for recognition of tadalafil. In this study, tadalafil and two macrocycles (ß-CD and SCX6) were selected as the guest and host molecules, respectively. The inclusion complexes of ß-CD/tadalafil and SCX6/tadalafil were studied by UV spectroscopy and molecular simulation calculations, proving the higher supermolecular recognition capability of SCX6 than ß-CD towards tadalafil. The ß-CD@RGO and SCX6@RGO composites were prepared by a wet-chemical route. The obtained composites were characterized by Fourier transform infrared spectrometry, thermogravimetric analysis, atomic force microscopy, and zeta potential. The SCX6@RGO showed a higher electrochemical response than ß-CD@RGO, which was caused by the higher recognition capability of SCX6 than ß-CD. By combining the merits of SCX6 and the RGO, a sensitive electrochemical sensing platform was developed based on the SCX6@RGO nanohybrids. A linear response range of 0.1-50 µM and 50-1000 µM for tadalafil with a low detection limit of 0.045 µM (S/N=3) was obtained by using this method. The constructed sensing platform was successfully used to determine tadalafil in herbal sexual health products and spiked human serum samples, suggesting its promising analytical applications for the trace level determination of tadalafil.


Asunto(s)
Calixarenos/química , Técnicas Electroquímicas/métodos , Grafito/química , Fenoles/química , Tadalafilo/sangre , Vasodilatadores/sangre , beta-Ciclodextrinas/química , Técnicas Biosensibles/métodos , Humanos , Límite de Detección , Modelos Moleculares , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Óxidos/química , Plantas Medicinales/química , Sulfonas/química , Tadalafilo/análisis , Vasodilatadores/análisis
9.
Biosens Bioelectron ; 87: 737-744, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27649329

RESUMEN

In this work, the molecular recognition of dimethomorph by disulfide bridged ß-cyclodextrin (SS-ß-CD) was studied by UV spectroscopy, 2D NMR, and molecular modeling. The results indicated that the SS-ß-CD/dimethomorph was more stable than ß-CD/dimethomorph, which is ascribed to the fact that the disulfide chain plays an important role in stabilizing the appropriate dual-CD conformation and also promoting the inclusion of the host and guest. In addition, a robust fluorescence method for dimethomorph sensing has been developed based on competitive host-guest interaction by selecting safranine T (ST) as optical indicator and SS-ß-CD functionalized reduced graphene oxide (SS-ß-CD-RGO) as the receptor. Upon the presence of dimethomorph to the pre-formed SS-ß-CD-RGO·ST complex, the ST molecule is displaced by dimethomorph, leading to a "switch-on" fluorescence response. That is due to the fact that the binding constant of the dimethomorph/SS-ß-CD complex was more than 5 times greater than that of ST/SS-ß-CD. The fluorescence intensity of SS-ß-CD-RGO·ST complex increased linearly with increasing concentration of dimethomorph ranging from 0.50 to 20.0µM. The proposed method showed a detection limit of 0.11µM for dimethomorph, and was successfully applied for the determination of dimethomorph residues in vegetables (cabbage, spinach) and environmental samples (water, soil) with good precision and recoveries from 96.5% to 104%.


Asunto(s)
Disulfuros/química , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Morfolinas/análisis , beta-Ciclodextrinas/química , Colorantes/química , Agua Dulce/análisis , Límite de Detección , Modelos Moleculares , Fenazinas/química , Suelo/química , Verduras/química
10.
Analyst ; 141(1): 270-8, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26626104

RESUMEN

A novel electrochemical method has been developed towards cholesterol detection based on competitive host-guest interaction by selecting methylene blue (MB) and calix[6]arene functionalized graphene (CX6-Gra) as the "reporter pair". In the presence of cholesterol, the MB molecules are displaced by cholesterol in the CX6-Gra.MB complex, leading to a "switch off" electrochemical response. A linear response range of 0.50 to 50.00 µM for cholesterol with a low detection limit of 0.20 µM (S/N = 3) was obtained by using the proposed method. This method could be successfully utilized to detect cholesterol in serum samples, and may be expanded to the analysis of other non-electroactive species. Besides, the host-guest interaction between cholesterol and CX6 was studied by molecular modeling calculations, which revealed that the complexation could reduce the energy of the system and the complex of a 1 : 1 host-guest stoichiometry had the lowest binding free energy of -8.01 kcal mol(-1). In addition, the constructed electrochemical sensing platform is important as it does not use any enzyme or antibody for the detection of cholesterol efficiently and selectively over common interfering species.


Asunto(s)
Calixarenos/química , Colesterol/análisis , Electroquímica/instrumentación , Grafito/química , Fenoles/química , Colesterol/química , Electrodos , Estudios de Factibilidad , Límite de Detección , Azul de Metileno/química , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...