Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(1): 110-116, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150391

RESUMEN

BiVO4 is a promising photoanode for photoelectrochemical (PEC) water splitting but suffers from high charge carrier recombination and sluggish surface water oxidation kinetics that limit its efficiency. In this work, a model of sulfur-incorporated FeOOH cocatalyst-loaded BiVO4 was constructed. The composite photoanode (BiVO4/S-FeOOH) demonstrates an enhanced photocurrent density of 3.58 mA cm-2, which is 3.7 times higher than that of the pristine BiVO4 photoanode. However, the current explanations for the generation of enhanced photocurrent signals through the incorporation of elements and cocatalyst loading remain unclear and require further in-depth research. In this work, the hole transfer kinetics were investigated by using a scanning photoelectrochemical microscope (SPECM). The results suggest that the incorporation of sulfur can effectively improve the charge transfer capacity of FeOOH. Moreover, the oxygen evolution reaction model provides evidence that S-doping can induce a "fast" surface catalytic reaction at the cocatalyst/solution interface. The work not only presents a promising approach for designing a highly efficient photoanode but also offers valuable insights into the role of element doping in the PEC water-splitting system.

2.
Dalton Trans ; 52(31): 10911-10917, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37489642

RESUMEN

Bismuth vanadate (BiVO4) has been considered a promising photoactive material in photoelectrochemical (PEC) water-splitting systems. However, the performance of BiVO4-based photoanodes is currently unsatisfactory, indicating the need for new architectural designs to improve their efficiency. In this paper, a porphyrin-phosphazene polymer (THPP-HCCP) was synthesized with a sizeable conjugated structure, and Ag particles were deposited on its surface as an organic-inorganic composite interface improvement layer. The deposition of the composite polymer film on BiVO4 resulted in a significant increase in photocurrent density, reaching up to 2.2 mA cm-2 (1.23 V vs. RHE), almost three times higher than pristine BiVO4, which benefits from the synergistic effect of Ag nanoparticles and porphyrin-phosphazene. Furthermore, photophysical and intensity-modulated photocurrent analysis demonstrated that the Ag-THPP-HCCP heterostructures could broaden the light-absorbing range and facilitate hole transfer to the semiconductor surface, resulting in an improved water oxidation process. The dynamic charge transport behavior of Ag-THPP-HCCP/BiVO4 was investigated using scanning photoelectrochemical microscopy, which showed that the rate constant (Keff) exhibits an almost 4-fold increase compared to pristine BiVO4, indicating a significant improvement in the transport of photogenerated holes. This experiment presents a novel strategy for designing high-efficiency polymer-based photoanodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA