Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959766

RESUMEN

Herein, ZIF-67-derived Co and N-doped carbon (Co/NC) particle-modified multilayer MXene (MXene@Co/NC) was developed as remarkable electrode material for carbendazim (CBZ) detection. MXene as a substrate provides an excellent conductive framework and plentiful accessibility sites. Co/NC particles embedding in MXene can not only prevent the interlayer stacking of MXene but also contribute a great deal of metal catalytic active sites and finally improve the adsorption and catalytic properties of the composite. Accordingly, the MXene@Co/NC electrode displays excellent electrocatalytic activity toward CBZ oxidation. Experimental parameters such as pH value, accumulation time, MXene@Co/NC modification volume and constituent materials' mass ratios were optimized. Under optimal conditions, the as-prepared sensor based on MXene@Co/NC holds a broad linearity range from 0.01 µM to 45.0 µM with a low limit of detection (LOD) of 3.3 nM (S/N = 3, S means the detection signal, while N represents the noise of the instrument). Moreover, the proposed sensor displays excellent anti-interference ability, superior reproducibility, excellent stability, and successfully achieves actual applications for CBZ detection in a lettuce sample.

2.
Front Microbiol ; 14: 1271286, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901808

RESUMEN

Wastewater from processing crustacean shell features ultrahigh chloride content. Bioremediation of the wastewater is challenging due to the high chloride ion content, making it inhospitable for most microorganisms to survive and growth. In this study, mangrove wetland-derived fungi were first tested for their salt tolerance, and the highly tolerant isolates were cultured in shrimp processing wastewater and the chloride concentration was monitored. Notably, the filamentous fungal species Aspergillus piperis could remove over 70% of the chloride in the wastewater within 3 days, with the fastest biomass increase (2.01 times heavier) and chloride removal occurring between day one and two. The chloride ions were sequestered into the fungal cells. The genome of this fungal species contained Cl- conversion enzymes, which may have contributed to the ion removal. The fungal strain was found to be of low virulence in larval models and could serve as a starting point for further considerations in bioremediation of shell processing wastewater, promoting the development of green technology in the shell processing industry.

3.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3800-3813, 2023 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-37805855

RESUMEN

Extracellular elastase-like protease is one of the key virulence proteases of Scedosporium aurantiacum. To date, little is known about this enzyme in terms of genetic information, structure, properties and virulence mechanism due to the difficulties in purification caused by its low secretion amount, high specific activity, uncompleted genome sequencing and annotation. This work investigated the gene, structure and enzymatic properties of this enzyme. The S. aurantiacum elastase-like protease from the fungal culture supernatant was analyzed through tandem mass spectrometry (MS/MS) approach, illustrating its primary structure. Bioinformatics tools were employed to predict the conserved domain and tertiary structure, the enzymatic properties were also studied. It turned out that S. aurantiacum extracellular elastase-like protease demonstrated well hydrolysis towards elastin and bovine achilles tendon collagen, with Vmax of 18.14 µg/s and 17.57 µg/s respectively, better than fish scale gelatin, with the lowest hydrolysis effect on casein. Its activity towards elastin was lower than that of the elastase from porcine pancreas, with values of Kcat/Km of 3.541 (µg/s) and 4.091 (µg/s), respectively. It was an alkaline protease, with optimal pH 8.2 and temperature 37 oC. Zn2+ promoted the enzymatic activity while Ca2+, Mg2+, Na+, elastatinal and PMSF inhibited its activity. Its sequence was similar to Paecilomyces lilacinus secreted serine protease (PDB Entry: c3f7oB_) with multiple conserved fractions each containing more than 7 amino acids, thus suitable for design of PCR primer. This study increased our knowledge on S. aurantiacum extracellular elastase-like protease in terms of structure and enzymatic properties, and may facilitate later studies on protein expression and virulence mechanism.


Asunto(s)
Elastina , Elastasa Pancreática , Animales , Bovinos , Elastasa Pancreática/genética , Elastina/genética , Espectrometría de Masas en Tándem , Serina Proteasas/genética
4.
Sci Total Environ ; 855: 158587, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084778

RESUMEN

To explore the responses of soil microbial communities to concentration gradients of antibiotic residues in soil, 32 soil samples were collected from a typical greenhouse vegetable production base in Northern China in 2019. The total concentrations of 26 antibiotic residues in these soil samples was 83.24-4237.93 µg·kg-1, of which metabolites of tetracyclines were 23.34-1798.80 µg·kg-1. The total concentrations in 32 samples were clustered into three levels (L: <100 µg·kg-1, M: 100-300 µg·kg-1, H: >300 µg·kg-1) to elucidate the impacts of antibiotic residues on the diversity, structure, composition, function and antibiotic resistome of soil microbial community. Results showed that higher concentration of antibiotic residues in soil was prone to decrease the diversity and shift the structure and composition of soil microbial community. Antibiotic resistome occurred in soils with antibiotic residues exceeding 300 µg·kg-1. Interactions among soil bacteria followed the order of H > L > M, consistent with the relative abundances of mobile genetic elements. Bacteroidetes and Firmicutes were the top attributors impacting the profile of antibiotics in soil. According to weighted comprehensive pollution index of risk quotient, in 28.1 % of soil samples the residual antibiotics presented high ecological risk, whereas in the rest of soil samples the ecological risk is medium. The results will enrich the database and provide references for antibiotic contamination control in soils of the region and alike.


Asunto(s)
Microbiota , Contaminantes del Suelo , Suelo , Verduras , Antibacterianos/análisis , Estiércol , Microbiología del Suelo , Contaminantes del Suelo/análisis , Genes Bacterianos
5.
Fish Shellfish Immunol ; 94: 479-484, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31472264

RESUMEN

The present study was conducted to evaluate the anti-inflammatory activity of florfenicol (FFC) against lipopolysaccharide (LPS)-induced inflammatory responses in Ctenopharyngodon idella in vivo and in vitro. Head-kidney (HK) macrophages were pre-treated with 10 µg/mL LPS and then exposed to different concentrations of FFC to determine its in vitro anti-inflammatory activity. Inhibitory effect of FFC on inflammatory mediators TNF-α, IL-6 and IL-1ß, as well as LPS-induced nitric oxide (NO) and prostaglandin E 2 (PGE 2) production were assayed by ELISA. The expression level of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were investigated by RT-PCR. Expression level of TLR-related genes (TLR1, TLR2, TLR4, TLR7, TLR8) expression, tumor necrosis factor receptor-associated factor 6 (TRAF6), transforming growth factor-b-activated kinase 1 (TAK1), Myeloid differentiation factor 88 (MyD88), nucleus p65, NF-κBα (IκBα) were measured by RT-PCR after grass carp were treated with 50, 100 and 200 mg FFC/kg body weight for 3 days. Results from in vitro tests demonstrated that FFC dose-dependently inhibited LPS-induced inflammatory cytokines TNF-α, IL-6 and IL-1ß, inflammatory factors NO and PGE 2 production in macrophages. In addition, iNOS and COX-2 expression levels decreased significantly as compared with LPS treated group. In vivo test demonstrated that treatment with FFC prevented the LPS-induced upregulation of TNF-α, IL-6, IL-1ß, NO and PGE 2. The expression level of iNOS, and COX-2 in FFC-treated grass carp were also downregulated as compared with LPS treated fish. Besides, FFC blocked the expression of Toll-like receptor 2 (TLR2) and then suppressed the phosphorylation of nuclear transcription factor-kappa B (NF-κB) p65 and degradation inhibitor of IκBα. Furthermore, administration of FFC inhibited the up-regulation of IRAK4, TRAF6 and TAK1 induced by LPS. These results suggest that the anti-inflammatory properties of FFC might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1ß, and TNF-α expressions through the down-regulation of Toll/NF-κB signaling pathways.


Asunto(s)
Antiinflamatorios/farmacología , Carpas/inmunología , Enfermedades de los Peces/tratamiento farmacológico , Inflamación/veterinaria , Tianfenicol/análogos & derivados , Animales , Carpas/genética , Relación Dosis-Respuesta a Droga , Enfermedades de los Peces/inducido químicamente , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , FN-kappa B/fisiología , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Tianfenicol/farmacología , Receptores Toll-Like/fisiología
6.
Anal Bioanal Chem ; 411(16): 3603-3612, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31129691

RESUMEN

A facile single hydrothermal method was developed to synthetize P,N codoped carbon dots (P,N/CDs), which show strong and stable fluorescence, good water solubility, low toxicity and good biocompatibility. Hence, a novel and efficient "off-on" P,N/CDs fluorescent probe was developed for the highly sensitive detection of lipoic acid (LA) for the first time. The fluorescence of the P,N/CDs was quenched by Cu2+ forming a P,N/CDs-Cu2+ complex, which acted as the "off" process, but Cu2+ could be removed by LA, due to stronger chelating between LA and Cu2+, forming a more stable complex, which recovered the fluorescence of the P,N/CDs, in order to achieve the "on" process. Under optimal conditions, the concentration of LA and the increased fluorescence intensity of the P,N/CDs-Cu2+ complex displayed a good linear relationship within the range of 0.05-28 µM, with a detection limit (S/N = 3) of 0.02 µM. The established "off-on" fluorescent probe was successfully applied to the analysis of LA in urine samples. The average recoveries were in the range of 98.3-101.5%, with a relative standard deviations of less than 3.1%. In addition, the P,N/CDs were also successfully applied to cellular dual-color imaging of live T24 cells. The results show that the P,N/CDs have great application potential in clinical diagnosis, bioassay and bioimaging. Graphical abstract.


Asunto(s)
Carbono/química , Colorantes Fluorescentes/química , Ácido Tióctico/análisis , Carbono/orina , Línea Celular Tumoral , Color , Humanos , Límite de Detección , Microscopía Electrónica de Transmisión , Espectroscopía de Fotoelectrones , Espectrometría de Fluorescencia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...