Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 934: 173140, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754505

RESUMEN

The digital economy, serving as a new engine to boost China's economic growth, inevitably affects carbon emissions given both its green features and its potential demands for energy inputs. To investigate the province-level impacts of the digital economy on carbon emissions, this study splits the digital industry from the multi-regional input-output table, and adopts a downscale structural decomposition analysis to reveal the technological, structural, and scale effects of the digital economy on carbon emissions. The results show that: (1) the expansion of digital economy increased 186.3 Mt of carbon emissions at the aggregate level during the investigated period (2012-2017) and that, therefore, the direct structural effects of the digital economy played a leading role in emission reduction (-156 Mt); (2) in terms of heterogeneity, most provinces presented a U distribution with the structural mitigation effect at the bottom and highly-developed provinces generated significant negative spillover effects; (3) from a regional coordination perspective, digital production achieved greater carbon emission reductions in the eastern and western areas of the country, while the northeastern and central regions gained environmental benefits via digital applications. The main conclusions thus enhance existent understanding of China's digital economy and low-carbon development, and the paper also proffers corresponding policy recommendations, e.g., accelerating the convergence of digital economy and traditional industries to promote carbon emissions reduction.

2.
Sci Total Environ ; 927: 172402, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608888

RESUMEN

Microbial fuel cells (MFCs) have significant potential for environmental remediation and energy recycling directly from refractory aromatic hydrocarbons. To boost the capacities of toluene removal and the electricity production in MFCs, this study constructed a polyaniline@carbon nanotube (PANI@CNT) bioanode with a three-dimensional framework structure. Compared with the control bioanode based on graphite sheet, the PANI@CNT bioanode increased the output voltage and toluene degradation kinetics by 2.27-fold and 1.40-fold to 0.399 V and 0.60 h-1, respectively. Metagenomic analysis revealed that the PANI@CNT bioanode promoted the selective enrichment of Pseudomonas, with the dual functions of degrading toluene and generating exogenous electrons. Additionally, compelling genomic evidence elucidating the relationship between functional genes and microorganisms was found. It was interesting that the genes derived from Pseudomonas related to extracellular electron transfer, tricarboxylic acid cycle, and toluene degradation were upregulated due to the existence of PANI@CNT. This study provided biomolecular insights into key genes and related microorganisms that effectively facilitated the organic pollutant degradation and energy recovery in MFCs, offering a novel alternative for high-performance bioanode.


Asunto(s)
Fuentes de Energía Bioeléctrica , Metagenómica , Nanotubos de Carbono , Tolueno , Tolueno/metabolismo , Compuestos de Anilina , Biodegradación Ambiental , Electricidad , Pseudomonas/metabolismo , Pseudomonas/genética , Electrodos
3.
Appl Microbiol Biotechnol ; 108(1): 159, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252324

RESUMEN

Magnetic fields (MF) have been proven efficient in bioaugmentation, and the internal MFs have become competitive because they require no configuration, despite their application in waste gas treatment remaining largely unexplored. In this study, we firstly developed an intensity-regulable bioaugmentation with internal MF for gaseous chlorobenzene (CB) treatment with modified packing in batch bioreactors, and the elimination capacity increased by up to 26%, surpassing that of the external MF. Additionally, the microbial affinity to CB and the packing surface was enhanced, which was correlated with the ninefold increased secreted ratio of proteins/polysaccharides, 43% promoted cell surface hydrophobicity, and half reduced zeta potential. Furthermore, the dehydrogenase content was promoted over 3 times, and CB removal steadily increased with the rising intensity indicating enhanced biofilm activity and reduced CB bioimpedance; this was further supported by kinetic analysis, which resulted in improved cell adhesive ability and biological utilisation of CB. The results introduced a novel concept of adjustable magnetic bioaugmentation and provided technical support for industrial waste gas treatments. KEY POINTS: • Regulable magnetic bioaugmentation was developed to promote 26% chlorobenzene removal • Chlorobenzene mineralisation was enhanced under the magnetic field • Microbial adhesion was promoted through weakening repulsive forces.


Asunto(s)
Biopelículas , Clorobencenos , Adhesión Celular , Cinética , Membrana Celular , Gases
4.
Artículo en Inglés | MEDLINE | ID: mdl-36901018

RESUMEN

The efficient, stable, and selective photocatalytic conversion of nitric oxide (NO) into harmless products such as nitrate (NO3-) is greatly desired but remains an enormous challenge. In this work, a series of BiOI/SnO2 heterojunctions (denoted as X%B-S, where X% is the mass portion of BiOI compared with the mass of SnO2) were synthesized for the efficient transformation of NO into harmless NO3-. The best performance was achieved by the 30%B-S catalyst, whose NO removal efficiency was 96.3% and 47.2% higher than that of 15%B-S and 75%B-S, respectively. Moreover, 30%B-S also exhibited good stability and recyclability. This enhanced performance was mainly caused by the heterojunction structure, which facilitated charge transport and electron-hole separation. Under visible light irradiation, the electrons gathered in SnO2 transformed O2 to ·O2- and ·OH, while the holes generated in BiOI oxidized H2O to produce ·OH. The abundantly generated ·OH, ·O2-, and 1O2 species effectively converted NO to NO- and NO2-, thus promoting the oxidation of NO to NO3-. Overall, the heterojunction formation between p-type BiOI and n-type SnO2 significantly reduced the recombination of photo-induced electron-hole pairs and promoted the photocatalytic activity. This work reveals the critical role of heterojunctions during photocatalytic degradation and provides some insight into NO removal.


Asunto(s)
Electrones , Óxido Nítrico , Luz , Nitratos
5.
Environ Sci Pollut Res Int ; 30(18): 51876-51886, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36820965

RESUMEN

The electrocatalytic reduction of CO2 towards CO is one of the most desirable routines to reduce atmospheric CO2 concentration and maintain a global carbon balance. In this work, a novel porous NiCu-embedded ZIF-derived N-doped carbon nanoparticle (NiCu@NCNPs) catalyst has been identified as an active, highly selective, stable, and cost-effective catalyst in CO2 reduction. A CO selectivity as high as 100% has been achieved on NiCu@NCNPs which is the highest reported to date. The particle current density of CO on NiCu@NCNPs is around 15 mA cm-2 under the optimized potential at -0.9 V vs. RHE. The NiCu@NCNPs electrode also exhibits excellent stability during the five sequential CO2 electroreduction experiments. The superior catalytic performance of NiCu@NCNPs in CO2RR can be related to its microstructure with high electrochemical surface area and low electron transfer resistance. Furthermore, a kinetic analysis has shown the formation of intermediate *COOH is the rate-determining step in CO2RR towards CO. According to the results of density functional theory (DFT) calculations, a low Gibbs-free energy change (∆G) for the rate-determining step leads to the enhanced catalytic performance of CO2RR on NiCu@NCNPs.


Asunto(s)
Dióxido de Carbono , Carbono , Cinética , Catálisis , Electrodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-36673784

RESUMEN

Desulfurization of organic sulfur in the fuel oil is essential to cut down the emission of sulfur dioxide, which is a major precursor of the acid rain and PM2.5. Currently, hydrodesulfurization is regarded as a state-of-art technology for the desulfurization of fuel oil. However, due to the stringent legislation of the fuel oil, the deep desulfurization technology is urgent to be developed. Adsorptive desulfurization method is promising due to the high selectivity and easy operation. The development of efficient adsorbent is important to advance this technology into industrial application. In this work, the five types of metal-organic frameworks (MOFs), including Cu-BTC, UMCM-150, MIL-101(Cr), UIO-66, and Cu-ABTC were synthesized for the adsorption of dibenzothiophene (DBT), a typical organic sulfur compound in the fuel oil. The experimental results revealed that the adsorption capacity of the five MOFs followed the order of Cu-ABTC, UMCM-150, Cu-BTC, MIL-101(Cr), and UIO-66, which adsorption capacities were 46.2, 34.2, 28.3, 26.3, and 22.0 mgS/g, respectively. The three types of Cu-based MOFs such as Cu-ABTC, UMCM-150, and Cu-BTC outperformed the Cr-based MOFs, MIL-101, and Zr-based MOFs, UIO-66. Since the surface area and pore volumes of the Cu-based MOFs were not the greatest among the tested five MOFs, the physical properties of the MOFs were not the only limited factor for the DBT adsorption. The π-complexation between DBT and linkers/metal in the MOFs was also important. Kinetic analysis showed that the DBT adsorption onto the five tested MOFs follows the pseudo-second-order kinetics, confirming that the chemical π-complexation was also contributed to the DBT adsorption. Furthermore, the operation parameters such as oil-adsorbent ratio, initial sulfur concentration and adsorption temperature for the DBT adsorption onto Cu-ABTC were optimized to be 100:1 g/g, 1000 mgS/L and 30 °C, respectively. This work can provide some insights into the development of efficient adsorbent for the organic sulfur adsorption.


Asunto(s)
Aceites Combustibles , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Cinética , Azufre/química , Adsorción
7.
Environ Pollut ; 315: 120469, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36272610

RESUMEN

To enhance the biological degradation of volatile organic sulfur compounds, a microbial fuel cell (MFC) system with superior activity is developed for dimethyl disulfide (DMDS) degradation. The MFC achieves a removal efficiency near 100% within 6 h (initial concentration: 90 mg L-1) and a maximum biodegradation rate constant of 0.743 mM h-1. The DMDS removal load attains 2.684 mmol h-1 L-1, which is 6.18-2440 times the loads of conventional biodegradation processes reported. Meanwhile, the maximum power density output and corresponding current density output are 5.40 W m-3 and 40.6 A m-3, respectively. The main mechanism of extracellular electron transfer is classified as mediated electron transfer, supplemented by direct transfer. Furthermore, the mass balance analysis indicates that methanethiol, S0, S2-, SO42-, HCHO, and CO2 are the main intermediate and end products involved in the hybrid metabolism pathway of DMDS. Overall, these findings may offer basic information for bioelectrochemical degradation of DMDS and facilitate the application of MFC in waste gas treatment. ENVIRONMENTAL IMPLICATION: Dimethyl disulfide (DMDS), which features poor solubility, odorous smell, and refractory property, is a typical pollutant emitted from the petrochemical industry. For the first time, we develop an MFC system for DMDS degradation. The superior DMDS removal load per unit reactor volume is 6.18-2440 times those of conventional biodegradation processes in literature. Both the electron transfer route and the hybrid metabolism pathway of DMDS are cleared in this work. Overall, these findings give an in-depth understanding of the bioelectrochemical DMDS degradation mechanism and provide an efficient alternative for DMDS removal.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electrones , Disulfuros , Transporte de Electrón
8.
Artículo en Inglés | MEDLINE | ID: mdl-35627834

RESUMEN

Trichloroethylene (TCE) is one of the most widely distributed pollutants in groundwater and poses serious risks to the environment and human health. In this study, sulfidated nanoscale zero-valent iron (S-nZVI) materials with different Fe/S molar ratios were synthesized by one-step methods. These materials degraded TCE in groundwater and followed a pathway that did not involve the production of toxic byproducts such as dichloroethenes (DCEs) and vinyl chloride (VC). The effects of sulfur content on TCE dechlorination by S-nZVI were thoroughly investigated in terms of TCE-removal efficiency, H2 evolution, and reaction rate. X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) characterizations confirmed Fe(0) levels in S-nZVI were larger than for zero-valent iron (nZVI). An Fe/S molar ratio of 10 provided the highest TCE-removal efficiencies. Compared with nZVI, the 24-h TCE removal efficiencies of S-nZVI (Fe/S = 10) increased from 30.2% to 92.6%, and the Fe(0) consumed during a side-reaction of H2 evolution dropped from 77.0% to 12.8%. This indicated the incorporation of sulfur effectively inhibited H2 evolution and allowed more Fe(0) to react with TCE. Moreover, the pseudo-first-order kinetic rate constants of S-nZVI materials increased by up to 485% compared to nZVI. In addition, a TCE degradation was proposed based on the variation of detected degradation products. Noting that acetylene, ethylene, and ethane were detected rather than DCEs and VC confirmed that TCE degradation followed ß-elimination with acetylene as the intermediate. These results demonstrated that sulfide modification significantly enhanced nZVI performance for TCE degradation, minimized toxic-byproduct formation, and mitigated health risks. This work provides some insight into the remediation of chlorinated-organic-compound-contaminated groundwater and protection from secondary pollution during remediation by adjusting the degradation pathway.


Asunto(s)
Agua Subterránea , Tricloroetileno , Alquinos , Agua Subterránea/química , Humanos , Hierro/química , Azufre , Tricloroetileno/química
9.
Chemosphere ; 286(Pt 1): 131552, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34320440

RESUMEN

Bioaugmented biotrickling filter (BTF) seeded with Piscinibacter caeni MQ-18, Pseudomonas oleovorans DT4, and activated sludge was established to investigate the treatment performance and biodegradation kinetics of the gaseous mixtures of tetrahydrofuran (THF) and methyl tert-butyl ether (MTBE). Experimental results showed an enhanced startup performance with a startup period of 9 d in bioaugmented BTF (25 d in control BTF seeded with activated sludge). The interaction parameter I2,1 of control (7.462) and bioaugmented BTF (3.267) obtained by the elimination capacity-sum kinetics with interaction parameter (EC-SKIP) model indicated that THF has a stronger inhibition of MTBE biodegradation in the control BTF than in the bioaugmented BTF. Similarly, the self-inhibition EC-SKIP model quantified the positive effects of MTBE on THF biodegradation, as well as the negative effects of THF on MTBE biodegradation and the self-inhibition of MTBE and THF. Metabolic intermediate analysis, real-time quantitative polymerase chain reaction, biofilm-biomass determination, and high-throughput sequencing revealed the possible mechanism of the enhanced treatment performance and biodegradation interactions of MTBE and THF.


Asunto(s)
Éteres Metílicos , Pseudomonas oleovorans , Biodegradación Ambiental , Burkholderiales , Furanos , Éteres Metílicos/análisis
10.
Chemosphere ; 287(Pt 2): 132247, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826930

RESUMEN

Chemical park is regarded as a major contributor of VOCs emissions in China. Currently, a green and safe technology, microbial fuel cells (MFCs), is being developed for the VOCs abatement. Noting that effective electron transfer is critical to the MFC performance. In this work, flavin mononucleotide (FMN) was dosed as an electron shuttle to improve the removal of the typical toxic VOCs, toluene. The experimental results revealed that the performance of toluene removal and power generation were accelerated with the dosage of 0.2-2 µM FMN. With the addition of 1 µM FMN, the removal efficiency, the maximum output voltage and the coulombic efficiency of MFC were increased by 18.4%, 64.4% and 56.3%, respectively. However, a further increase in FMN concentration to 2 µM caused a reduction in the removal efficiency and coulombic efficiency. The images of scanning electron microscopy and confocal laser scanning microscopy showed that the presence of FMN greatly promoted the microbial growth and its activity. Furthermore, microbial community analysis also implied that the moderate dosage of FMN (0.2-1 µM) was beneficial for the growth of the typical exoelectrogens, Geobacter sp., and thus the coulombic efficiency was increased. In addition, an electron transfer pathway involving in cytochrome b, OMCs, cytochrome c, and MtrA was proposed based on the cyclic voltammetry analysis. This work will provide a fundamental theoretical support for its application of toxic VOCs abatement from the chemical park.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electrodos , Mononucleótido de Flavina , Gases , Tolueno
11.
Chemosphere ; 291(Pt 2): 132888, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34780742

RESUMEN

To overcome the limitation of mass transfer and reaction rate involved in the biodegradation of gaseous o-xylene, the airlift reactor and microbial electrolysis cell were integrated to construct an airlift microbial electrolysis cell (AL-MEC) system for the first time, in which the bioanode was modified by polypyrrole to further improve biofilm attachment. The developed AL-MEC system achieved 95.4% o-xylene removal efficiency at optimized conditions, and maintained around 75% removal efficiency even while the inlet o-xylene load was as high as 684 g m-3 h-1. The existence of O2 exhibited a competition in electrons with the bioanode but a positive effect on ring-opening process in the o-xylene oxidation. The limitation of mass transfer had been overcome as the empty bed resistance time in the range of 20-80 s did not influence the system performance significantly. The microbial community analysis confirmed the o-xylene degradation microbes and electroactive bacteria were the dominant, which could be further enriched at 0.3 V against standard hydrogen electrode. This work revealed the feasibility of the AL-MEC system for the degradation of o-xylene and similar compounds, and provided insights into bioelectrochemical system design with high gaseous pollution removal capacity.


Asunto(s)
Gases , Polímeros , Biodegradación Ambiental , Electrólisis , Pirroles , Xilenos
12.
Environ Sci Technol ; 55(22): 15313-15322, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34517700

RESUMEN

An amine-based biphasic solvent is promising to cut down the energy penalty of CO2 capture. However, the high viscosity of the CO2-enriched solvent retards its industrial application. This work proposed a novel dual-stage phase separation process using a triethylenetetramine and 2-(diethylamino)ethanol blend as a biphasic solvent, which separates a certain proportion of CO2-enriched phase during CO2 absorption to reduce its viscosity. Experimental results showed that the proposed dual-stage phase separation process improved the phase separation behavior and effectively enhanced the absorption rate by 49% at 50 °C, when 50 vol % CO2-enriched phase was separated at 0.3 mol mol-1. Kinetic analysis showed that the absorption rate was mainly controlled by liquid-side mass transfer. The regeneration heat of the dual-stage phase separation process cut down the energy penalty by 33% compared with the monoethanolamine-based process. Compared with the conventional biphasic solvent-based process, the heat duty was further declined by 8%. The 1H nuclear magnetic resonance analysis showed that the dual-stage phase separation process could effectively control the generation of absorption products and intensify the interphase migration of tertiary amines.


Asunto(s)
Dióxido de Carbono , Etanolamina , Aminas , Cinética , Solventes
13.
J Hazard Mater ; 419: 126330, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34171668

RESUMEN

Two-phase partitioning bioreactors (TPPBs) have been extensively used for volatile organic compounds (VOCs) removal. To date, most studies have focused on improving the mass transfer of gas phases/non-aqueous phases (NAPs)/aqueous phases, whereas the NAP/biological phases and gas/biological phases transfer has been neglected. Herein, chitosan was introduced into a TPPB to increase cell surface hydrophobicity (CSH) and improve the n-hexane mass transfer. The performance and stability of the TPPB with chitosan for n-hexane biodegradation were investigated, and it was found out that the TPPB with chitosan achieved maximum removal efficiency and elimination capacity of 80.6% and 26.5 g m-3 h-1, thereby reaching much higher values than those obtained without chitosan (61.3% and 15.2 g m-3 h-1). Chitosan not only obvio usly increased cell surface hydrophobicity and cell dry biomass on the surface of silicone oil, but might also allow hydrophobic cells in aqueous phases to directly capture and biodegrade n-hexane, resulting in an obvious improvement of mass transfer from the gas phase to biomass. Stability enhancement was another attractive advantage from chitosan addition. This study might provide a new strategy for the development of TPPB in the hydrophobic VOCs treatment.


Asunto(s)
Quitosano , Pseudomonas mendocina , Biodegradación Ambiental , Reactores Biológicos , Hexanos
14.
Chemosphere ; 278: 130408, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34126676

RESUMEN

A novel electrode composed of Cu nanosheets constructed from nanoparticles was synthesized by in situ electrochemical derivation from the metal-organic framework (MOF) HKUST-1. The prepared derivative electrode (HE-Cu) exhibited higher Faradaic efficiency (FE, 56.0%) of electrochemical CO2 reduction (CO2R) compared with that of pristine Cu foil (p-Cu, 32.3%) at an overpotential of -1.03 V vs. a reversible hydrogen electrode (RHE). HE-Cu also exhibited lower onset potential of CO2R as well as inhibiting the H2 evolution reaction. Electrochemical measurements revealed that HE-Cu exhibited higher CO2 adsorption (1.58-fold) and a larger electrochemical active surface area (1.24-fold) compared with p-Cu. Physicochemical characterization and Tafel analysis showed that stepped Cu (211) surfaces, (200) facets and Cu edge atoms on HE-Cu contributed significantly to the enhanced CO2R activity and/or HCOOH and/or C2 product selectivity. The FEs of HCOOH and C2 products for HE-Cu increased 1.57-fold and 10.6-fold at an overpotential of -1.19 V vs. RHE compared with p-Cu. Although CH4 was produced on p-Cu, its formation was totally suppressed on HE-Cu due to the increase of edge sites and (200) facets. Our study demonstrates that electroreduction of MOFs is a promising method to prepare novel and stable electrochemical catalysts with unique surface structures. The fabricated derivative electrode not only promoted electrochemical CO2R activity but also exhibited high C2 product selectivity.


Asunto(s)
Estructuras Metalorgánicas , Dióxido de Carbono , Cobre , Técnicas Electroquímicas , Oxidación-Reducción
15.
Chemosphere ; 282: 131028, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34116314

RESUMEN

Effective electron transfer (ET) between microorganisms and electrodes is essential for the toluene degradation and power generation in a microbial fuel cell (MFC). In this work, the neutral red, with excellent electrochemical reversibility and compatible redox potential as NADH/NAD+, was selected as electron mediator to boost the performance of the MFC. Experimental results revealed that, with the 0.5 µM neutral red, the removal efficiency and coulombic efficiency of the gaseous toluene powered MFC was increased by ~19% and ~400%, respectively. However, further increase in neutral red concentration resulted in a decreased in removal efficiency and coulombic efficiency, which was attributed by the toxicity of neutral red to the microbes. The microbial community analysis indicated that, with the dosage of the neutral red, the dominated bacteria shifted from Geobacter to Ignavibacteriales, resulting in a high coulombic efficiency. With the further increase in the neutral red, the amount of Ignavibacteriales gradually decreased and thus the coulombic efficiency declined at a high neutral red concentration. Based on the cyclic voltammetry analysis, an electron transport pathway involving neutral red, cytochromes, and OMCs in neutral red mediated MFC was proposed. Overall, the dosage of neutral not only enhanced the electron transfer but also induced the growth of the exoelectrogens, and thus significantly improve the MFC performance.


Asunto(s)
Fuentes de Energía Bioeléctrica , Transporte de Electrón , Electrones , Gases , Tolueno
16.
Environ Sci Technol ; 55(6): 3956-3966, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33629580

RESUMEN

Several typical active substances (•NO, •NO2, H2O2, O3, •OH, and O2-•), directly or indirectly play dominant roles during dielectric barrier discharge (DBD) reaction. This study measured these active substances and removed them by using radical scavengers, such as catalase, superoxide dismutase, carboxy-PTIO (c-PTIO), tert-butanol (TBA), and MnO2 in different reaction atmospheres (air, N2, and O2). The mechanism for chlorobenzene (CB) removal by plasma in air atmosphere was also investigated. The production of O═NOO-• generated by •NO took around 75% of the total production of O═NOO-•. Removing •NO increased the O3 amount by about 80% likely because of the mutual inhibition between O3 and reactive nitrogen species in or out of the discharge area. The quantitative comparison of •OH and H2O2 revealed that the formation of •OH was 3.06-4.65 times that of H2O2 in these reaction atmospheres. Calculation results showed that approximately 1.61% of H2O was used for O3 generation. Ionization patterns affected the form of solid deposits during the removal of CB in N2 and O2 atmospheres caused by Penning ionization and thermal radiation tendencies, respectively. Correlation analysis results suggested the macroscopic synergistic or inhibitory effects happened among these active substances. A zero-dimensional reaction kinetics model was adopted to analyze the reactions during the formation of active substances in DBD, and the results showed good consistency with experiments. The interactions of each active substance were clarified. Finally, a response surface method model was developed to predict CB removal by the DBD plasma process. Stepwise regression analysis results showed that CB removal was affected by the contents of different active substances in air, N2 atmosphere, and O2 atmosphere, respectively: O2-•, •OH, and O3; H2O2, O═NOO-•, and O3; •OH and O3.


Asunto(s)
Peróxido de Hidrógeno , Compuestos de Manganeso , Clorobencenos , Cinética , Óxidos
17.
Huan Jing Ke Xue ; 41(6): 2754-2761, 2020 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-32608791

RESUMEN

The use of microbial photoelectrochemical cells (MPECs) for the removal of contaminants is a cost-effective and environment-friendly method. Based on the preparation of polyaniline/titanium dioxide nanotube array (PANI/TiO2-NTs) composite photoelectrodes, an MPEC system comprising PANI/TiO2-NTs photoanode and biocathode was constructed and the removal performance of nitrate nitrogen (NO3--N) was studied. The experimental results showed that the PANI/TiO2-NT electrode exhibited the best photoelectric performance when the PANI loading time was 80 s. Compared with the TiO2-NTs electrode, the photocurrent density doubled. The light-driven MPEC system could realize autotrophic denitrification without an external voltage. The biodegradation of NO3--N conformed to the pseudo first-order kinetics. The higher the photoresponse current density, the better the denitrification performance of the system. When the initial concentration of NO3--N was 25 mg·L-1 and the photoresponse current density increased from 0.17 mA·cm-2 to 0.67 mA·cm-2, the average denitrification rate increased from 0.83 mg·(L·h)-1 to 2.83 mg·(L·h)-1. High-throughput sequencing of the biocathode microbial membranes revealed that Pseudomonas (27.37%) was the dominant bacteria. It was considered that the photogenerated electrons generated by the PANI/TiO2-NTs photoanode were transmitted to the cathode through an external circuit. Pseudomonas and other microorganisms with autotrophic denitrification and electrochemical activity directly used the electrons on the electrode as the sole electron donors for autotrophic denitrification reaction.


Asunto(s)
Desnitrificación , Nitrógeno , Nitratos , Titanio
18.
Chemosphere ; 258: 127148, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32535434

RESUMEN

Tetrahydrofuran (THF) is a common highly toxic cyclic aliphatic ether that frequently exists in waste gases. Removal of gaseous THF is a serious issue with important environmental ramifications. A novel three-phase airlift bioreactor (TPAB) loaded with immobilized cells was developed for efficient THF removal from gas streams. An effective THF-degrading transformant, Pseudomonas oleovorans GDT4, which contains the pTn-Mod-OTc-gfp plasmid and was tagged with a green fluorescent protein (GFP), was constructed. Continuous treatment of THF-containing waste gases was succeeded by the GFP-labelled cells immobilized with calcium alginate and activated carbon fiber in the TPAB for 60 days with >90% removal efficiency. The number of fluorescent cells in the beads reached 1.7 × 1011 cells·g-1 of bead on day 10, accounting for 83.3% of the total number of cells. The amount further increased to 3.0 × 1011 cells·g-1 of bead on day 40. However, it decreased to 2.5 × 1011 cells·g-1 of bead with a substantial increase in biomass in the liquid because of cell leakage and hydraulic shock. PCR-DGGE revealed that P. oleovorans was the dominant microorganism throughout the entire operation. The maximum elimination capacity was affected by empty bed residence time (EBRT). The capacity was only 25.9 g m-3·h-1 at EBRT of 80 s, whereas it reached 37.8 g m-3·h-1 at EBRT of 140 s. This work provides an alternative method for full-scale removal of gaseous THF and presents a useful tool for determining the biomass of a specific degrader in immobilized beads.


Asunto(s)
Reactores Biológicos/microbiología , Furanos/metabolismo , Pseudomonas oleovorans/metabolismo , Administración de Residuos/métodos , Alginatos/química , Biodegradación Ambiental , Biomasa , Fibra de Carbono , Células Inmovilizadas/metabolismo , Carbón Orgánico , Diseño de Equipo , Gases , Proteínas Fluorescentes Verdes/genética , Microbiota , Microorganismos Modificados Genéticamente , Pseudomonas oleovorans/citología , Pseudomonas oleovorans/genética , Administración de Residuos/instrumentación
19.
Environ Sci Technol ; 54(12): 7601-7610, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32436695

RESUMEN

A biphasic solvent features high absorption capacity and low heat duty for CO2 capture. Phase separation behavior is essential to cut down energy penalty. Four phase splitting agents with different hydrophobicities, such as 1,3-dimethyl-2-imidazolidinone (DMI), 1-methyl-2-pyrrolidinone (NMP), N,N-dimethylformamide, and sulfolane, were dosed to biphasic solvents, triethylenetetramine and 2-(diethylamino)ethanol. Experimental results revealed that they can tune the phase separation behavior during CO2 absorption. Generally, under the same CO2 loading, the volume ratio of the rich phase increased with their hydrophobicity (log P), which accounts for over 50%. Moreover, their influences on absorption capacity, kinetics, and thermodynamics were also investigated. After dosing NMP, the heat duty was decreased by 22%. Furthermore, a phase splitting agent with a positive log P was more conducive to reducing the heat duty, and one with a negative log P enhanced the absorption rate. With DMI, the absorption rate was 114% higher than that of MEA at rich loading. The 13C NMR analysis showed that the agents were not involved in CO2 absorption and did not affect the reaction mechanism. Furthermore, quantum calculation was used to verify the reaction mechanism, confirming that the phase splitting agent increases the reaction equilibrium constant and makes it proceed more thoroughly.


Asunto(s)
Dióxido de Carbono , Calor , Solventes , Termodinámica , Trientina
20.
Chemosphere ; 252: 126571, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32224361

RESUMEN

An exoelectrogens, Shewanella oneidensis MR-1 (S. oneidensis MR-1), was supplied to a microbial fuel cell (MFC) to enhance the degradation of a recalcitrant organic compound, o-xylene. The experimental results revealed that, with the addition of the S. oneidensis MR-1, the o-xylene removal efficiency increased by 35-76% compared with the original MFC. The presence of the S. oneidensis MR-1 not only improved the activity of the biofilm in the bioanode but also developed the connections between the bacteria by nanowires. Therefore, the maximum power density increased from 52.1 to 92.5 mW/m3 after the addition of the S. oneidensis MR-1. The microbial community analysis showed that adding the S. oneidensis MR-1 increased the biodiversity in bioanode. The dominant exoelectrogens shifted from Zoogloea sp., Delftia sp., Achromobacter sp., Acinetobacter sp., Chryseobacterium sp., and Stenotrophomonas sp. to Zoogloea sp., Delftia sp., Shewanella sp., Achromobacter sp., Hydrogenophaga sp., Sedimentibacter sp. and Chryseobacterium sp.. Furthermore, the cyclic voltammetry analysis showed that the outer membrane bound protein complex of OmcA-MtrCAB was involved as direct electron transfer pathway in the S. oneidensis MR-1 containing bioanode. We believed that this work is promising to provide optional strategy for efficient VOCs degradation by adjusting the microbial community in the bioanode.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Shewanella/fisiología , Xilenos/metabolismo , Biopelículas , Gases , Nanocables , Shewanella/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...