Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 217: 115806, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37714273

RESUMEN

Sepsis is a dysregulated systemic inflammatory response caused by infection that leads to multiple organ injury and high mortality without effective treatment. Corilagin, a natural polyphenol extracted from traditional Chinese herbs, exhibits strong anti-inflammatory properties. However, the role for Corilagin in lipopolysaccharide (LPS)-induced sepsis and the molecular mechanisms underlying this process have not been completely explored. Here we determine the effect of Corilagin on LPS-treated mice and use a screening approach integrating surface plasmon resonance with liquid chromatography-tandem mass spectrometry (SPR-LC-MS/MS) to further explore the therapeutic target of Corilagin. We discovered that Corilagin significantly prolonged the survival time of septic mice, attenuated the multi-organ injury and the expression of pyroptosis-related proteins in tissues of LPS-treated mice. In vitro studies revealed that Corilagin inhibited pyroptosis and NLRP3 inflammasome activation in LPS-treated macrophages followed with ATP stimulation, as reflected by decreased levels of GSDMD-NT and activated caspase-1, and reduced ASC specks formation. Mechanistically, Corilagin alleviated the formation of ASC specks and blocked the interaction of ASC and pro-caspase1 by competitively binding with the caspase recruitment domain (CARD) of ASC. Additionally, Corilagin interrupted the TLR4-MyD88 interaction through targeting TIR domain of MyD88, leading to the inhibition of NF-κB activation and NLRP3 production. In addition, Corilagin downregulated genes associated with several inflammatory responses and inflammasome-related signaling pathways in LPS-stimulated macrophages. Overall, our results indicate that the inhibitory effect of Corilagin on pyroptosis through targeting TIR domain of MyD88 and binding the CARD domain of ASC in macrophages plays an essential role in protection against LPS-induced sepsis.


Asunto(s)
Inflamasomas , Sepsis , Animales , Ratones , Dominio de Reclutamiento y Activación de Caspasas , Cromatografía Liquida , Inflamasomas/metabolismo , Lipopolisacáridos , Macrófagos , Factor 88 de Diferenciación Mieloide/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Espectrometría de Masas en Tándem
2.
Nat Aging ; 3(4): 418-435, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37117789

RESUMEN

Aging is a critical risk factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efficacy. The immune responses to inactivated vaccine for older adults, and the underlying mechanisms of potential differences to young adults, are still unclear. Here we show that neutralizing antibody production by older adults took a longer time to reach similar levels in young adults after inactivated SARS-CoV-2 vaccination. We screened SARS-CoV-2 variant strains for epitopes that stimulate specific CD8 T cell response, and older adults exhibited weaker CD8 T-cell-mediated responses to these epitopes. Comparison of lymphocyte transcriptomes from pre-vaccinated and post-vaccinated donors suggested that the older adults had impaired antigen processing and presentation capability. Single-cell sequencing revealed that older adults had less T cell clone expansion specific to SARS-CoV-2, likely due to inadequate immune receptor repertoire size and diversity. Our study provides mechanistic insights for weaker response to inactivated vaccine by older adults and suggests the need for further vaccination optimization for the old population.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto Joven , Humanos , Anciano , Vacunas contra la COVID-19 , COVID-19/prevención & control , Inmunidad Celular , Células Clonales , Epítopos , Vacunas de Productos Inactivados
3.
STAR Protoc ; 3(1): 101206, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35284834

RESUMEN

Major histocompatibility complex (MHC) tetramers can work as diagnostic tools to identify antigen-specific T cells in immunological research and monitoring. Here, we provide a general protocol for the production of MHC tetramer. We obtain highly pure N-terminal His-tagged HLA-A2 α chain and ß2-microglobulin (ß2m) to fold a monomer with a photocleavable peptide, which can exchange with an HLA-A2 presented peptide derived from influenza A virus. Further those monomers compose tetramer to stain antigen-specific CD8+ T cells. For complete details on the use and execution of this protocol, please refer to Xiao C.C. et al. (2021).


Asunto(s)
Linfocitos T CD8-positivos , Enfermedades Transmisibles , Antígeno HLA-A2 , Humanos , Péptidos , Coloración y Etiquetado
4.
STAR Protoc ; 2(3): 100789, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34414379

RESUMEN

Here, we describe the use of the artificial antigen-presenting cell (aAPC) system for the verification of T-cell epitopes. We purify and activate CD8+ T cells from blood samples from HLA-A2 that are negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CD8+ T cells are combined with peptide-loaded T2-A2 cells, which are then stained with a SARS-CoV-2-specific MHC-1 tetramer to identify specific HLA-A2-restricted T-cell epitopes. The use of aAPC and healthy donors means that only BSL2 lab conditions are needed. For details of the use and implementation of this protocol, please refer to Deng et al. (2021).


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Epítopos de Linfocito T/inmunología , Antígeno HLA-A2/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Humanos , Activación de Linfocitos
5.
Acta Pharm Sin B ; 11(1): 112-126, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33532184

RESUMEN

Inflammatory caspase-11 senses and is activated by intracellular lipopolysaccharide (LPS) leading to pyroptosis that has critical role in defensing against bacterial infection, whereas its excess activation under pathogenic circumstances may cause various inflammatory diseases. However, there are few known drugs that can control caspase-11 activation. We report here that scutellarin, a flavonoid from Erigeron breviscapus, acted as an inhibitor for caspase-11 activation in macrophages. Scutellarin dose-dependently inhibited intracellular LPS-induced release of caspase-11p26 (indicative of caspase-11 activation) and generation of N-terminal fragment of gasdermin D (GSDMD-NT), leading to reduced pyroptosis. It also suppressed the activation of non-canonical nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as evidenced by reduced apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and decreased interleukin-1 beta (IL-1ß) and caspase-1p10 secretion, whereas the NLRP3-specific inhibitor MCC950 only inhibited IL-1ß and caspase-1p10 release and ASC speck formation but not pyroptosis. Scutellarin also suppressed LPS-induced caspase-11 activation and pyroptosis in RAW 264.7 cells lacking ASC expression. Moreover, scutellarin treatment increased Ser/Thr phosphorylation of caspase-11 at protein kinase A (PKA)-specific sites, and its inhibitory action on caspase-11 activation was largely abrogated by PKA inhibitor H89 or by adenylyl cyclase inhibitor MDL12330A. Collectively, our data indicate that scutellarin inhibited caspase-11 activation and pyroptosis in macrophages at least partly via regulating the PKA signaling pathway.

6.
Int Immunopharmacol ; 90: 107242, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33307514

RESUMEN

Colonic patches, the counterparts of Peyer's patches in the small intestine, are dynamically regulated lymphoid tissues in the colon that have an important role in defensing against microbial infections. Berberine is an isoquinoline alkaloid extracted from medicinal herbs including Rhizoma coptidis and has long been used for the treatment of infectious gastroenteritis, but its impact on the colonic lymphoid tissues (such as colonic patches) is unknown. In this study, we aimed to investigate whether berberine had any influences on the colonic patches in mice with bacterial infection. The results showed that oral berberine administration in bacterial infected mice substantially enhanced the hypertrophy of colonic patches, which usually possessed the features of two large B-cell follicles with a separate T-cell area. Moreover, the colonic patches displayed follicular dendritic cell networks within the B-cell follicles, indicative of mature colonic patches containing germinal centers. Concomitant with enlarged colonic patches, the cultured colon of infected mice treated with berberine secreted significantly higher levels of interleukin-1ß (IL-1ß), IL-6, TNF-α, and CCL-2, while NLRP3 inhibitor MMC950 or knockout of NLRP3 gene abrogated berberine-induced hypertrophy of colonic patches, suggesting the involvement of the NLRP3 signaling pathway in this process. Functionally, oral administration of berberine ameliorated liver inflammation and improved formed feces in the colon. Altogether, these results indicated that berberine was able to augment the hypertrophy of colonic patches in mice with bacterial infection probably through enhancing local inflammatory responses in the colon.


Asunto(s)
Infecciones Bacterianas/patología , Berberina/uso terapéutico , Colon/efectos de los fármacos , Tejido Linfoide/efectos de los fármacos , Enfermedades Peritoneales/patología , Animales , Linfocitos B/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/metabolismo , Colon/crecimiento & desarrollo , Colon/patología , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Femenino , Gastroenteritis/tratamiento farmacológico , Tejido Linfoide/crecimiento & desarrollo , Tejido Linfoide/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Enfermedades Peritoneales/tratamiento farmacológico , Enfermedades Peritoneales/metabolismo , Linfocitos T/efectos de los fármacos
7.
Cell Prolif ; 52(5): e12663, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31347748

RESUMEN

OBJECTIVE: Induction of secondary necrosis/pyroptosis contributes to the toxicity of chemotherapeutic drugs, in which gasdermin E (GSDME) plays critical roles. This study aimed to explore whether GSDME is involved in mediating the cytotoxic effects of cisplatin and doxorubicin on mouse macrophages. METHODS: RAW 264.7 cells and bone marrow-derived macrophages (BMDMs) were treated with cisplatin or doxorubicin. Propidium iodide staining was used to assay necrosis, and immunoblotting was performed to detect protein expression. GSDME was knocked down by using small interfering RNA. Mice were injected intraperitoneally to evaluate toxicity to macrophages in vivo. Flow cytometry and immunofluorescence microscopy were adopted to analyse phenotypes of peritoneal cells. Cytokine levels were assayed by cytometric bead array. RESULTS: Both cisplatin and doxorubicin dose-dependently induced necrosis in mouse RAW 264.7 macrophages and BMDMs. Accompanying this, multiple caspases were activated, concomitant with the cleavage of poly (ADP-ribose) polymerase. Consistent with caspase-3 activation, GSDME was cleaved to generate its N-terminal fragment (GSDME-NT), thus leading to secondary necrosis/pyroptosis. Inhibition of caspase-3 significantly attenuated the generation of GSDME-NT concurrently with decreased necrosis in macrophages. GSDME knockdown also evidently decreased the necrosis in RAW 264.7 and BMDMs. Besides, cisplatin administration depleted peritoneal macrophages in mice, which was associated with caspase-3 activation and GSDME-NT generation. Consistent with the macrophage depletion, cisplatin administration significantly decreased survival of mice with bacterial infection. CONCLUSION: Chemotherapeutic cisplatin and doxorubicin exerted their cytotoxicity on macrophages partly by inducing caspase-3/GSDME-mediated secondary necrosis.


Asunto(s)
Caspasa 3/metabolismo , Cisplatino/farmacología , Doxorrubicina/farmacología , Piroptosis/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Citocinas/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/mortalidad , Infecciones por Escherichia coli/patología , Infecciones por Escherichia coli/veterinaria , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/genética , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...