Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 157: 555-563, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30991179

RESUMEN

The hybrid membrane bioreactor - nanofiltration treatment process can be an effective approach for treating the landfill leachate, but the residual leachate concentrate highly loaded with the humic substance and salts remains an environmental concern. Herein, a loose nanofiltration membrane (molecular weight cut-off of 860 Da) was used to recover the humic substance, which can act as a key component of organic fertilizer, from the leachate concentrate. The loose nanofiltration membrane showed the high permeation fluxes and high transmissions (>94.7%) for most inorganic ions (i.e., Na+, K+, Cl-, and NO3-), while retaining 95.7 ±â€¯0.3% of the humic substance, demonstrating its great potential in effective fractionation of humic substance from inorganic salts in the leachate concentrate. The operation conditions, i.e., cross-flow rates and temperatures, had more pronounced impacts on the filtration performance of the loose nanofiltration membrane. Increasing cross-flow rates from 60 to 260 L h-1 resulted in an improvement of ca. 7.3% in the humic substance rejection, mainly due to the reduced concentration polarization effect. In contrast, the solute rejection of the nanofiltration membrane was negatively dependent on the temperature. The rejection of humic substance decreased from 96.3 ±â€¯0.3% to 92.0 ±â€¯0.4% with increasing the temperature from 23 to 35 °C, likely due to the enlargement of the membrane pore size and enhancement in solute diffusivity. The humic substance was enriched from 1735 to 15,287 mg L-1, yielding a 91.2% recovery ratio with 85.7% desalination efficiency at a concentration factor of 9.6. The recovered HS had significantly stimulated the seed germination and growth of the green mungbean plants with no obvious phytotoxicity. These results demonstrate that loose nanofiltration can be an effective promising technology to recover the humic substance as a valuable fertilizer component towards sustainable management of the landfill leachate concentrate.


Asunto(s)
Contaminantes Químicos del Agua , Reactores Biológicos , Fertilizantes , Filtración , Sustancias Húmicas
2.
Environ Sci Technol ; 52(18): 10698-10708, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30118599

RESUMEN

Use of tight ultrafiltration (UF) membranes has created a new pathway in fractionation of dye/salt mixtures from textile wastewater for sustainable resource recovery. Unexpectedly, a consistently high rejection for the dyes with smaller sizes related to the pore sizes of tight UF membranes is yielded. The potential mechanism involved in this puzzle remains unclear. In this study, seven tailored UF membranes with molecular weight cut-offs (MWCOs) from 6050 to 17530 Da were applied to separate dye/salt mixtures. These UF membranes allowed a complete transfer for NaCl and Na2SO4, due to large pore sizes. Additionally, these UF membranes had acceptably high rejections for direct and reactive dyes, due to the aggregation of dyes as clusters for enhanced sizes and low diffusivity. Specifically, the membrane with an MWCO of 7310 Da showed a complete rejection for reactive blue 2 and direct dyes. An integrated UF-diafiltration process was subsequently designed for fractionation of reactive blue 2/Na2SO4 mixture, achieving 99.84% desalination efficiency and 97.47% dye recovery. Furthermore, reactive blue 2 can be concentrated from 2.01 to 31.80 g·L-1. These results indicate that UF membranes even with porous structures are promising for effective fractionation of dyes and salts in sustainable textile wastewater treatment.


Asunto(s)
Aguas Residuales , Purificación del Agua , Colorantes , Membranas Artificiales , Cloruro de Sodio , Textiles , Ultrafiltración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...