Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
PeerJ ; 11: e15771, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547711

RESUMEN

CRISPR/Cas9-mediated genome editing technology has been widely used for the study of gene function in crops, but the differences between species have led to widely varying genome editing efficiencies. The present study utilized a potato hairy root genetic transformation system and incorporated a rapid assay with GFP as a screening marker. The results clearly demonstrated that salt and osmotic stress induced by NaCl (10 to 50 mM) and mannitol (50 to 200 mM) treatments significantly increased the positive rates of genetic transformation mediated by A. rhizogenes and the editing efficiency of the CRISPR/Cas9-mediated genome editing system in potato. However, it was observed that the regeneration of potato roots was partially inhibited as a result. The analysis of CRISPR/Cas9-mediated mutation types revealed that chimeras accounted for the largest proportion, ranging from 62.50% to 100%. Moreover, the application of salt and osmotic stress resulted in an increased probability of null mutations in potato. Notably, the highest rate of null mutations, reaching 37.5%, was observed at a NaCl concentration of 10 mM. Three potential off-target sites were sequenced and no off-targeting was found. In conclusion, the application of appropriate salt and osmotic stress significantly improved the editing efficiency of the CRISPR/Cas9-mediated genome editing system in potato, with no observed off-target effects. However, there was a trade-off as the regeneration of potato roots was partially inhibited. Overall, these findings present a new and convenient approach to enhance the genome editing efficiency of the CRISPR/Cas9-mediated gene editing system in potato.


Asunto(s)
Edición Génica , Solanum tuberosum , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Solanum tuberosum/genética , Cloruro de Sodio/farmacología , Presión Osmótica
3.
Mol Plant ; 15(7): 1211-1226, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35733345

RESUMEN

Potato (Solanum tuberosum) is the most consumed non-cereal food crop. Most commercial potato cultivars are autotetraploids with highly heterozygous genomes, severely hampering genetic analyses and improvement. By leveraging the state-of-the-art sequencing technologies and polyploid graph binning, we achieved a chromosome-scale, haplotype-resolved genome assembly of a cultivated potato, Cooperation-88 (C88). Intra-haplotype comparative analyses revealed extensive sequence and expression differences in this tetraploid genome. We identified haplotype-specific pericentromeres on chromosomes, suggesting a distinct evolutionary trajectory of potato homologous centromeres. Furthermore, we detected double reduction events that are unevenly distributed on haplotypes in 1021 of 1034 selfing progeny, a feature of autopolyploid inheritance. By distinguishing maternal and paternal haplotype sets in C88, we simulated the origin of heterosis in cultivated tetraploid with a survey of 3110 tetra-allelic loci with deleterious mutations, which were masked in the heterozygous condition by two parents. This study provides insights into the genomic architecture of autopolyploids and will guide their breeding.


Asunto(s)
Solanum tuberosum , Haplotipos , Fitomejoramiento , Poliploidía , Solanum tuberosum/genética , Tetraploidía
4.
Nat Plants ; 4(9): 651-654, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104651

RESUMEN

Re-domestication of potato into an inbred line-based diploid crop propagated by seed represents a promising alternative to traditional clonal propagation of tetraploid potato, but self-incompatibility has hindered the development of inbred lines. To address this problem, we created self-compatible diploid potatoes by knocking out the self-incompatibility gene S-RNase using the CRISPR-Cas9 system. This strategy opens new avenues for diploid potato breeding and will also be useful for studying other self-incompatible crops.


Asunto(s)
Diploidia , Técnicas de Silenciamiento del Gen/métodos , Proteínas de Plantas/genética , Polinización , Ribonucleasas/genética , Autofecundación , Solanum tuberosum/genética , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Genes de Plantas/genética , Genes de Plantas/fisiología , Filogenia , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Polinización/genética , Polinización/fisiología , Reacción en Cadena de la Polimerasa , Ribonucleasas/fisiología , Autofecundación/genética , Autofecundación/fisiología , Autoincompatibilidad en las Plantas con Flores/genética , Solanum tuberosum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...