Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Lancet Reg Health West Pac ; 48: 101127, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39040034

RESUMEN

Background: The isolated systolic hypertension (ISH) is of high prevalence, with a relatively poor prognosis. However, there is still no direct evidence to demonstrate the benefits of intensive blood pressure (BP) control among these patients. We aimed to evaluate intensive BP control with the target of <130/80 mmHg in ISH. Methods: This was a post hoc analysis of patients with ISH in the China Rural Hypertension Control Project (CRHCP), defined as systolic blood pressure (SBP) ≥ 140 mmHg and diastolic blood pressure (DBP) < 90 mmHg. The primary outcome was cardiovascular disease (CVD) including stroke, myocardial infarction, heart failure, and CVD death. Mixed-effect Cox proportional regression and generalized estimating equation models were used for analysis. Findings: In total, 7981 patients were randomly assigned to the intervention group and 8005 to the usual care group between May 8 and November 27, 2018. The median follow-up was 3.02 years (25-75%: 2.98-3.06). Mean systolic/diastolic BP at the end of 36 months follow-up was 126.5/71.2 mmHg in the intensive BP control group and 148.1/78.6 mmHg in the usual care group. The intervention group presented a substantially lower rate of composite CVD compared with the usual care group (1.52% versus 2.30%/year; multiple-adjusted hazard ratio (HR): 0.64; 95% confidence interval (CI): 0.57-0.72; P < 0.001), especially for stroke (multiple-adjusted HR: 0.61; 95% CI: 0.53-0.70; P < 0.001), HF (multiple-adjusted HR: 0.57; 95% CI: 0.36-0.91; P = 0.017) and CVD death (multiple-adjusted HR: 0.64; 95% CI: 0.50-0.83; P < 0.001). The primary composite outcome was substantially reduced by 36% in the intervention group compared with the usual care group. The further interaction analysis revealed that the reduction of primary outcome by intervention was consistent across subgroups of sex, age, education level, history of CVD, use of antihypertensive medication and baseline DBP (P > 0.05 for all interaction test). The incidences of symptomatic hypotension, syncope injurious falls and renal outcomes did not differ between the two groups, even though hypotension was increased in intervention group (RR:1.71; 95% CI: 1.28-2.28; P < 0.001). Interpretation: Intensive BP control (<130/80 mmHg) was effective and safe in patients with ISH for the prevention of CVD events. Funding: The Ministry of Science and Technology (China) of China and the Science and Technology Program of Liaoning Province, China.

2.
Inorg Chem ; 63(31): 14550-14558, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39051734

RESUMEN

Nonlinear optical (NLO) coherent light sources are widely applied in many areas of science and technology. As the core medium, the NLO material is required to have a wide transparent range, a large NLO response, and a high laser damaged threshold (LDT). It is common knowledge that langasite (La3Ga5SiO14, LGS) crystal has an underdeveloped second-harmonic generation (SHG) coefficient and a small birefringence, which seriously restrict its application in the NLO field, despite that it has a broad transmittance spectrum and a moderate LDT. Herein, we have successfully obtained novel langasite NLO crystals LGSS (La3Ga5Si0.5Sn0.5O14) and LGGS (La3Ga5Ge0.5Sn0.5O14), with short UV absorption edges of 209 and 212 nm, respectively. Incorporating heavy ions Sn4+ into the structure, a distorted BO6 octahedron was adjusted by the radius difference between Sn4+ and Si4+/Ge4+, which caused the strong SHG responses in LGSS (∼10.77 × KDP) and LGGS (∼9.23 × KDP) and increased birefringences of 0.034 and 0.025, respectively. Besides, they also had large energy band gaps (4.95 eV for LGSS, and 4.93 eV for LGGS), which allowed high LDTs with LGSS of 1.3 GW/cm2 and LGGS of 813 MW/cm2. This work demonstrates a new strategy to enhance SHG responses and birefringence for existing NLO materials and enriches langasite family crystals.

3.
Inorg Chem ; 63(31): 14786-14793, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39054963

RESUMEN

Borates, as advanced optical materials, have garnered wide interest due to their diverse structural configurations and great potential for applications in the ultraviolet (UV) regions. Herein, we synthesized a new rare-earth borate crystal, namely, K2NaYB2O6, which is classified as one of the ABReB2O6 compounds, where A and B represent alkali metal and Re denotes rare-earth metal. K2NaYB2O6 adopts in the monoclinic space group P21/c (No. 14), showcasing a three-dimensional (3D) framework composed of a planar triangular configuration of [BO3] units and distortive [YO7] polyhedra. Notably, both dihedral angles between distinct [BO3] units reach 79.6°, which represents an unprecedented structural feature in monoclinic ABReB2O6-type crystals. Moreover, the compound has a short UV absorption edge at around 204 nm, corresponding to a wide band gap of approximately 5.67 eV. Additionally, it possesses a moderate birefringence of 0.028 at 1064 nm. Further analysis utilizing theoretical calculations suggests that the optical behaviors of K2NaYB2O6 are mainly governed by its basic structural unit [BO3] triangles and distorted [YO7] polyhedra. These findings enrich the structure chemistry of rare-earth borates and offer valuable insights for the design of optical crystals in the UV wavelength range.

4.
Chem Sci ; 15(23): 8959-8965, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38873076

RESUMEN

Strong second-harmonic generation (SHG) and a short ultraviolet (UV) cutoff edge are two crucial yet often conflicting parameters that must be finely tuned in the exploration of nonlinear optical (NLO) materials. In this study, two new rare earth borate NLO crystals, K7BaSc2B15O30 (KBSBO) and Rb21Sr3.8Sc5.2B45O90 (RSSBO), were rationally designed through a bifunctional primitive strategy to achieve an optimized balance between favorable SHG efficiency and UV transparency. As anticipated, both KBSBO and RSSBO exhibit a wide UV transparency window below 190 nm. Notably, these tailored crystals display strong SHG responses, with RSSBO achieving a remarkable enhancement in SHG efficiency (2 × KDP), surpassing that of most deep-UV rare earth borates containing [B5O10] groups known to date. Theoretical calculations and structural analyses reveal that the impressive SHG activities primarily stem from the [B5O10] groups and [ScO6] polyhedra. These findings suggest promising potential for KBSBO and RSSBO crystals as beryllium-free deep UV NLO materials.

5.
BMC Med ; 22(1): 258, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902731

RESUMEN

BACKGROUND: The 2018/2023 ESC/ESH Guidelines underlined a gap how baseline cardiovascular disease (CVD) risk predicted blood pressure (BP) lowering benefits. Further, 2017 ACC/AHA Guideline and 2021 WHO Guideline recommended implementation studies about intensive BP control. Now, to bridge these guideline gaps, we conducted a post hoc analysis to validate whether the baseline CVD risk influences the effectiveness of the intensive BP control strategy, which was designed by China Rural Hypertension Control Project (CRHCP). METHODS: This is a post hoc analysis of CRHCP, among which participants were enrolled except those having CVD history, over 80 years old, or missing data. Subjects were stratified into quartiles by baseline estimated CVD risk and then grouped into intervention and usual care group according to original assignment in CRHCP. Participants in the intervention group received an integrated, multi-faceted treatment strategy, executed by trained non-physician community health-care providers, aiming to achieve a BP target of < 130/80 mmHg. Cox proportional-hazards models were used to estimate the hazard ratios of outcomes for intervention in each quartile, while interaction effect between intervention and estimated CVD risk quartiles was additionally assessed. The primary outcome comprised myocardial infarction, stroke, hospitalization for heart failure, or CVD deaths. RESULTS: Significant lower rates of primary outcomes for intervention group compared with usual care for each estimated CVD risk quartile were reported. The hazard ratios (95% confidence interval) in the four quartiles (from Q1 to Q4) were 0.59 (0.40, 0.87), 0.54 (0.40, 0.72), 0.72 (0.57, 0.91) and 0.65 (0.53, 0.80), respectively (all Ps < 0.01). There's no significant difference of hazard ratios by intervention across risk quartiles (P for interaction = 0.370). Only the relative risk of hypotension, not symptomatic hypotension, was elevated in the intervention group among upper three quartiles. CONCLUSIONS: Intensive BP lowering strategy designed by CRHCP group was effective and safe in preventing cardiovascular events independent of baseline CVD risk. TRIAL REGISTRATION: The trial is registered with ClinicalTrials.gov, NCT03527719.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Humanos , Masculino , Femenino , China/epidemiología , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Persona de Mediana Edad , Anciano , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/epidemiología , Presión Sanguínea/fisiología , Población Rural , Antihipertensivos/uso terapéutico , Resultado del Tratamiento , Factores de Riesgo de Enfermedad Cardiaca
6.
Angew Chem Int Ed Engl ; 63(30): e202405833, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-38748747

RESUMEN

Nitrogen heterocycles are commonly found in bioactive natural products and drugs. However, the biocatalytic tools for nitrogen heterocycle synthesis are limited. Herein, we report the discovery of vanillyl alcohol oxidases (VAOs) as efficient biocatalysts for the one-pot synthesis of 2-aryl thiazolines from various 4-hydroxybenzaldehydes and aminothiols. The wild-type biocatalyst features a broad scope of 4-hydroxybenzaldehydes. Though the scope of aminothiols is limited, it could be improved via semi-rational protein engineering, generating a variant to produce previously inaccessible cysteine-derived bioactive 2-aryl thiazolines using the wild-type VAO. Benefiting from the derivatizable functional groups in the enzymatic products, we further chemically modified these products to expand the chemical space, offering a new chemoenzymatic strategy for the green and efficient synthesis of structurally diverse 2-aryl-thiazoline derivatives to prompt their use in drug discovery and catalysis.


Asunto(s)
Tiazoles , Tiazoles/química , Tiazoles/síntesis química , Benzaldehídos/química , Biocatálisis , Estructura Molecular , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/química , Alcoholes Bencílicos
7.
Angew Chem Int Ed Engl ; 63(30): e202407048, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38701362

RESUMEN

Utilizing the manipulation of perovskite dimensions has been proven as an effective approach in regulating perovskite properties. Nevertheless, achieving precise control over the dimensions of perovskites within the same system poses a significant challenge. In this study, we introduce a sophisticated method to attain precise dimensional control in metal-free perovskites (MFPs), specifically through the process of octahedron tailoring by compositional engineering. Accordingly, we successfully instigated a transition from HPIP-NH4I3 ⋅ H2O (3D), HPIP2-NH4I5 (2D) and HPIP3-NH4I7 (1D) structures. Notably, HPIP2-NH4I5 is the first 2D MFP. As anticipated, these perovskites exhibited completely distinct fluorescence and X-ray detection capabilities due to their differing dimensions. Remarkably, the 2D HPIP2-NH4I5 device effectively hindered ion migration perpendicular to the 2D layers, achieving the lowest detection limit of 12.2 nGyair s-1 among metal-free single crystals-based detectors. This study expands the dimensionality control strategies for MFPs and introduces, for the first time, the potential of 2D MFPs as high-performance X-ray detectors, thereby enriching the diversity of the MFPs family.

8.
Inorg Chem ; 63(24): 10932-10937, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38814671

RESUMEN

Inorganic supramolecular compounds are the emergent class of infrared (IR) nonlinear optical (NLO) materials. However, the reported inorganic supramolecular IR NLO pnictides are still scarce. In this work, a new inorganic supramolecular IR NLO phosphide, EuSi7P10, has been synthesized using the metal salt flux method. The structure of EuSi7P10 features an anionic host framework containing the oriented [Si7P16] dual-T2 supertetrahedra with the guest Eu2+ cations filling in the intervals. Additionally, EuSi7P10 exhibits strong phase-matched (PM) second-harmonic generation (SHG) (4.0 × AgGaS2), large birefringence (0.087 @2050 nm), and wide infrared transparency. This study highlights the potential of inorganic supramolecular pnictides for exploring high-performance IR NLO crystals.

9.
J Transl Int Med ; 12(1): 35-50, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38591063

RESUMEN

Background and Objectives: Cardiac injury plays a critical role in contributing to the mortality associated with sepsis, a condition marked by various forms of programmed cell deaths. Previous studies hinted at the WW domain-containing E3 ubiquitin protein ligase 2 (WWP2) involving in heart failure and endothelial injury. However, the precise implications of WWP2 in sepsis-induced cardiac injury, along with the underlying mechanisms, remain enigmatic. Methods: Sepsis induced cardiac injury were constructed by intraperitoneal injection of lipopolysaccharide. To discover the function of WWP2 during this process, we designed and performed loss/gain-of-function studies with cardiac-specific vectors and WWP2 knockout mice. Combination experiments were performed to investigate the relationship between WWP2 and downstream signaling in septic myocardium injury. Results: The protein level of WWP2 was downregulated in cardiomyocytes during sepsis. Cardiac-specific overexpression of WWP2 protected heart from sepsis induced mitochondrial oxidative stress, programmed cell death and cardiac injury, while knockdown or knockout of WWP2 exacerbated this process. The protective potency of WWP2 was predominantly linked to its ability to suppress cardiomyocyte ferroptosis rather than apoptosis. Mechanistically, our study revealed a direct interaction between WWP2 and acyl-CoA synthetase long-chain family member 4 (FACL4), through which WWP2 facilitated the ubiquitin-dependent degradation of FACL4. Notably, we observed a notable reduction in ferroptosis and cardiac injury within WWP2 knockout mice after FACL4 knockdown during sepsis. Conclusions: WWP2 assumes a critical role in safeguarding the heart against injury induced by sepsis via regulating FACL4 to inhibit LPS-induced cardiomyocytes ferroptosis.

10.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38436464

RESUMEN

This study aimed to investigate network-level brain functional changes in breast cancer patients and their relationship with fear of cancer recurrence (FCR). Resting-state functional MRI was collected from 43 patients with breast cancer and 40 healthy controls (HCs). Graph theory analyses, whole-brain voxel-wise functional connectivity strength (FCS) analyses and seed-based functional connectivity (FC) analyses were performed to identify connection alterations in breast cancer patients. Correlations between brain functional connections (i.e. FCS and FC) and FCR level were assessed to further reveal the neural mechanisms of FCR in breast cancer patients. Graph theory analyses indicated a decreased clustering coefficient in breast cancer patients compared to HCs (P = 0.04). Patients with breast cancer exhibited significantly higher FCS in both higher-order function networks (frontoparietal, default mode, and dorsal attention systems) and primary somatomotor networks. Among the hyperconnected regions in breast cancer, the left inferior frontal operculum demonstrated a significant positive correlation with FCR. Our findings suggest that breast cancer patients exhibit less segregation of brain function, and the left inferior frontal operculum is a key region associated with FCR. This study offers insights into the neural mechanisms of FCR in breast cancer patients at the level of brain connectome.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Conectoma , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Miedo
11.
Inorg Chem ; 63(8): 3986-3991, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38359456

RESUMEN

Germanate is garnering increasing attention in the field of optoelectronics owing to its competitive optical transparency and robust stability. Herein, a novel lithium-rich rare-earth germanate, Li13YGe4O16, was fabricated for the first time using a high-temperature solution approach. This compound adopts the asymmetric space group Cmc21 (no. 36), characterized by isolated [YO6] and [GeO4] structural motifs with Li+ cations located in the channel. Notably, Li13YGe4O16 presents a short ultraviolet cutoff edge at 240 nm, indicative of an enlarged band gap of 4.96 eV and showcases a wide mid-infrared transmission region exceeding 6.0 µm. Moreover, Li13YGe4O16 features exceptional thermal stability and moderate second harmonic generation (SHG) intensity. Additionally, a theoretical analysis suggests that the distorted [YO6] octahedra. [GeO4] and [LiO4] tetrahedra play a significant role in the optical activities of Li13YGe4O16. These attributes endow Li13YGe4O16 with the potential to serve as a new mid-IR nonlinear optical (NLO) crystal and enrich the structural chemistry of germanates.

12.
Dalton Trans ; 53(6): 2696-2702, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38226497

RESUMEN

Germanate oxides have garnered considerable interest owing to their diverse structural configuration and intriguing properties. Herein, we present a novel niobium germanate crystal, Rb8Nb10Ge6O41, extracted through the process of spontaneous crystallization. It showcases a unique three-dimensional (3D) structural framework composed of one-dimensional (1D) twisted [Nb7O30]∞ chains and isolated [Ge3O9] rings, arising from the divergent polymerized manifestations of [NbO6] and [GeO4] basic building blocks, respectively, marking the first instance of such a topography in germanate materials. Notably, the title compound exhibits exceptional thermal stability up to 1250 °C with a good congruent melting nature. Moreover, it achieves a short ultraviolet edge at 306 nm and a favorable infrared edge cutoff exceeding 6.2 µm, thus indicating a wide transparency window. Additionally, this study elucidates the microscopic birefringence of Rb8Nb10Ge6O41 and clarifies the intricate relationship between its structure and properties. Our findings suggest that the polymerization of distinct structural motifs within a single compound is an effective strategy for exploring novel inorganic materials.

13.
Angew Chem Int Ed Engl ; 63(12): e202319424, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38270334

RESUMEN

Polar molecular crystals, with their densely stacked polar nonlinear optical (NLO) active units, are favored for their large second harmonic generation (SHG) responses and birefringence. However, their potential for practical applications as Infrared (IR) NLO materials has historically been underappreciated due to the weak inter-molecular interaction forces that may compromise their physicochemical properties. In this study, we propose molecular crystals with polar molecular cages as a treasure-house for the development of superior IR NLO materials and a representative system, binary chalcogenide molecular crystals, composed of [P4 Sn ] (n=3-9) polar molecular cages, is introduced. These crystals may not only achieve wide band gap, large SHG response, and birefringence in a single structure, but also exhibit favorable physicochemical properties. We subsequently obtained a polar molecular crystal, α-P4 S5 , which demonstrated exceptional IR optical properties, including a strong SHG response (1.1×AGS), wide band gap (3.02 eV), large birefringence (0.134@2050 nm), and a broad transmission range (0.41-14.7 µm). Moreover, it showed excellent water resistance and hardness. These findings highlight the potential of polar molecular crystals as a promising platform for the development of high-performance IR NLO materials.

14.
Chem Commun (Camb) ; 60(17): 2349-2352, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38284323

RESUMEN

A sustainable C(sp2)-C(sp3) cross-electrophile coupling was developed between readily available 5-bromophthalide and 1-benzyl-4-iodopiperidine under micellar conditions, leading to a key intermediate of one of our development compounds. Copper was found to play a crucial role as a co-catalyst in this dual catalysis system. The chemistry and process were successfully demonstrated in a kilo scale to deliver sufficient drug substance to the clinical campaigns. This is the first reported scale-up of such a challenging cross-electrophilic coupling that uses an aqueous medium, and not undesirable reprotoxic polar aprotic solvents (e.g. DMF, DMAc, and NMP).


Asunto(s)
Micelas , Agua , Solventes , Catálisis
15.
Inorg Chem ; 63(5): 2844-2850, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38262613

RESUMEN

Borate materials are of significant interest due to their versatile structural configuration and competitive ultraviolet (UV) transparency range. In this study, we present a novel rare-earth borate crystal, KNa2Lu(BO3)2, synthesized for the first time through a facile spontaneous crystallization method. It adopts the centrosymmetric space group Pnma (no. 62) and yields a unique three-dimensional (3D) structural network formed by isolated [BO3] plane triangles and distorted [LuO7] polyhedra. This compound displays excellent thermal stability up to ∼990 °C, demonstrating a favorable congruent melting nature. Moreover, KNa2Lu(BO3)2 achieves a notably short UV absorption cutoff at approximately 204 nm, yielding a large band gap of 5.58 eV. Remarkably, it showcases an enlarged birefringence of 0.044 at 1064 nm, implying its potential as a birefringent material. Moreover, density functional theory calculations demonstrate that the optical characteristics are predominantly influenced by fundamental building blocks [BO3] triangles and distorted [LuO7] polyhedra. Our findings demonstrate the potential of KNa2Lu(BO3)2 in the development of a birefringent candidate and enrich the structural chemistry of rare-earth-based borates.

16.
Comput Biol Med ; 168: 107752, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38007977

RESUMEN

The identification and function determination of long non-coding RNAs (lncRNAs) can help to better understand the transcriptional regulation in both normal development and disease pathology, thereby demanding methods to distinguish them from protein-coding (pcRNAs) after obtaining sequencing data. Many algorithms based on the statistical, structural, physical, and chemical properties of the sequences have been developed for evaluating the coding potential of RNA to distinguish them. In order to design common features that do not rely on hyperparameter tuning and optimization and are evaluated accurately, we designed a series of features from the effects of open reading frames (ORFs) on their mutual interactions and with the electrical intensity of sequence sites to further improve the screening accuracy. Finally, the single model constructed from our designed features meets the strong classifier criteria, where the accuracy is between 82% and 89%, and the prediction accuracy of the model constructed after combining the auxiliary features equal to or exceed some best classification tools. Moreover, our method does not require special hyper-parameter tuning operations and is species insensitive compared to other methods, which means this method can be easily applied to a wide range of species. Also, we find some correlations between the features, which provides some reference for follow-up studies.


Asunto(s)
ARN Largo no Codificante , Sistemas de Lectura Abierta/genética , ARN Largo no Codificante/genética , Algoritmos , Proteínas/genética
17.
Angew Chem Int Ed Engl ; 63(2): e202315647, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38009714

RESUMEN

Acquiring high-performance ultraviolet (UV) nonlinear optical (NLO) materials that simultaneously exhibit a strong second harmonic generation (SHG) coefficients, as short as possible SHG phase-matching (PM) wavelength and non-hygroscopic properties has consistently posed a significant challenge. Herein, through multicomponent modification of KBe2 BO3 F2 (KBBF), an excellent UV NLO crystal, Mg(C3 O4 H2 )(H2 O)2 , was successfully synthesized in malonic system. This material possesses a unique 2D NLO-favorable electroneutral [Mg(C3 O4 H2 )3 (H2 O)2 ]∞ layer, resulting in the rare coexistence of a strong SHG response of 3×KDP (@1064 nm) and short PM wavelength of 200 nm. More importantly, it exhibits exceptional water resistance, which is rare among ionic organic NLO crystals. Theoretical calculations revealed that its excellent water-resistant may be originated from its small available cavity volumes, which is similar to the famous LiB3 O5 (LBO). Therefore, excellent NLO properties and stability against air and moisture indicate it should be a promising UV NLO crystal.

18.
Inorg Chem ; 62(51): 21240-21246, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38079591

RESUMEN

Electrochemical water splitting, a crucial reaction for renewable energy storage, demands highly efficient and stable catalysts. Defect and interface engineering has been widely acknowledged to play a pivotal role in improving electrocatalytic performance. Herein, we demonstrate a facile strategy to construct sulfur vacancy (Sv)-engineered Co3S4/MoS2-interfaced nanosheet arrays to modulate the interface electronic structure in situ reduction with NaBH4. The abundant sulfur vacancies and well-arranged nanosheet arrays in Sv-Co3S4/MoS2 lead to pronounced electrocatalytic properties for hydrogen and oxygen evolution reactions (HER/OER) in an alkaline medium, with observed overpotentials of 156 and 209 mV at 10 mA cm-2, respectively. Additionally, as a bifunctional electrocatalyst, Sv-Co3S4/MoS2 requires a cell voltage of 1.67 V at 10 mA cm-2 for overall water splitting and exhibits long-term stability with activity sustained for more than 20 h. This study provides a novel approach to producing transition metal compound-interfaced electrocatalysts with rich vacancies under mild conditions, showcasing their potential for efficient water splitting applications.

19.
Inorg Chem ; 62(51): 21173-21180, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078842

RESUMEN

Herein, three alkali metal mercury selenites, K2Hg2(SeO3)3, Rb2Hg2(SeO3)3, and Cs2Hg3(SeO3)4, were successfully obtained by a hydrothermal method. The three compounds featured same one-dimensional (1D) [HgOm(SeO3)n]∞ chain structure that consisting of distorted Hg-O polyhedra and SeO3 triangular pyramids with stereochemically active lone pair (SCALP) electrons. Interestingly, the rich coordination environment of Hg atoms and the size difference of alkali metal cations lead to diverse arrangement of SeO3 groups, which makes them exhibit different birefringence. The band gaps of the three compounds indicate that they are potential ultraviolet (UV) optical materials. Detailed theoretical calculations demonstrate that the combined effects of SeO3 triangular pyramids and Hg-O polyhedra are responsible for the optical characteristics of the reported compounds.

20.
Curr Pharm Des ; 29(30): 2387-2395, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37855363

RESUMEN

BACKGROUND: In this study, we aimed to clarify the role and mechanism by which Cathepsin D (CTSD) mediates the advanced glycation end products (AGEs)-induced proliferation of vascular smooth muscle cells (VSMCs). METHODS: We conducted a Western blotting assay and co-immunoprecipitation assay to detect the expression of target proteins and the interaction between different proteins. Cell Counting Kit-8 (CCK-8) assay and 5- ethynyl-2'-deoxyuridine (EdU) were used to evaluate the proliferation. RESULTS: AGEs significantly promoted phenotypic switching and proliferation of VSMCs in a concentration-dependent manner. This effect of AGEs was accompanied by inhibition of CTSD. Both the proliferation of VSMCs and inhibition of CTSD induced by AGEs could be attenuated by the specific inhibitor of the receptor for advanced glycation end products (RAGE), FPS-ZM1. Overexpression of CTSD significantly alleviated these effects of AGEs on VSMCs. The mechanism of CTSD action in VSMCs was also explored. Overexpression of CTSD reduced the activation of p-ERK caused by AGEs. By contrast, the knockdown of CTSD, elicited using a plasmid containing short hairpin RNA (shRNA) against CTSD, further increased the activation of p-ERK compared to AGEs alone. Additionally, co-immunoprecipitation studies revealed an endogenous interaction between CTSD, a protease, and p-ERK, its potential substrate. CONCLUSION: It has been demonstrated that CTSD downregulates the level of phosphorylated ERK by degrading its target, and this interaction plays a critical role in the proliferation of VSMCs induced by the AGE/RAGE axis. These results provide a novel insight into the prevention and treatment of vascular complications in diabetes.


Asunto(s)
Productos Finales de Glicación Avanzada , Músculo Liso Vascular , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Músculo Liso Vascular/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacología , Proliferación Celular , Miocitos del Músculo Liso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA