Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 319(Pt 3): 117342, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37879505

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sargentodoxa cuneata (Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson, DXT)-Patrinia villosa(Patrinia villosa (Thunb.) Dufr, BJC) constitutes a commonly employed herb pair in Chinese medicine for colorectal cancer (CRC) treatment. Modern pharmacological investigations have revealed the anticancer activities of both Sargentodoxa cuneata and Patrinia villosa. Nevertheless, comprehensive studies are required to discern the specific antitumor active ingredients and mechanism of action when these two herbs are used in combination. AIM OF THE STUDY: Through the integration of network pharmacology, molecular docking techniques, experimental assays, and bioinformatics analysis, our study aims to forecast the active ingredients, potential targets, and molecular mechanisms underlying the therapeutic efficacy of this herb pair against CRC. MATERIALS AND METHODS: Plant names (1, Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson; 2, Patrinia villosa (Thunb.) Dufr.) have been verified through WorldFloraOnline (www.worldFloraonline.org) and MPNs (http://mpns.kew.org). The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) were utilized for screening the active ingredients of the herb pair. The PharmMapper database was employed to predict the target proteins for each active ingredient. CRC-related targets were obtained from the Genecards database, Online Mendelian Inheritance in Man (OMIM) database, Disease Gene Network (DisGeNET) database, and Therapeutic Target Database (TTD). Common targets were identified by intersecting the target proteins of all active ingredients with CRC-related targets. Protein-protein interactions (PPI) for the common target proteins were constructed using the String database and Cytoscape 3.9.1 software. Network topology analysis facilitated the identification of core targets. These core targets were subjected to enrichment analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the Metascape database. Molecular docking was performed using Discovery Studio 2019 to investigate the interactions between the active ingredients and core target proteins. The core targets were validated through bioinformatics analysis using GEPIA, HPA, and the cBioPortal database. Finally, a series of experiments were conducted to further validate the results in vitro. RESULT: A total of 15 active ingredients and 255 herb targets were identified, resulting in 66 common targets in conjunction with 6113 disease targets. The PPI analysis highlighted AKT1, EGFR, CASP3, SRC, and ESR1 as core targets. KEGG enrichment analysis indicated significant enrichment in the PI3K-AKT signaling pathway, a pathway associated with cancer. Molecular docking experiments confirmed favorable interactions between dihydroguaiaretic acid and the core target proteins (AKT1, EGFR, CASP3, and ESR1). Bioinformatics analysis revealed differential expression of EGFR and CASP3 in normal and CRC tissues. Cellular experiments further verified that dihydroguaiaretic acid induces apoptosis in colorectal cancer cells through the PI3K-AKT signaling pathway. CONCLUSION: Our network pharmacology study has elucidated that the Sargentodoxa cuneata-Patrinia villosa herb pair exerts the negative regulation of the PI3K/AKT/mTOR signaling pathway, ultimately leading to the induction of apoptosis in colorectal cancer cells. This research has predicted and validated the active ingredients, potential targets, and molecular mechanisms of Sargentodoxa cuneata-Patrinia villosa in the treatment of CRC, providing scientific evidence for the use of traditional Chinese medicine in managing CRC.


Asunto(s)
Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Patrinia , Humanos , Caspasa 3 , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Simulación del Acoplamiento Molecular , Serina-Treonina Quinasas TOR , Transducción de Señal , Neoplasias Colorrectales/tratamiento farmacológico , Receptores ErbB
2.
Cell Death Discov ; 9(1): 84, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890151

RESUMEN

As a chronic inflammatory bowel disease, ulcerative colitis (UC) imposes a significant burden on public healthcare worldwide due to its increasing morbidity. Chinese medicines are regarded as potent therapeutic agents for UC treatment with minimal side effects. In the present study, we sought to determine the novel role of a traditional medicine Qingre Xingyu (QRXY) recipe in the development of UC and aimed to contribute to the currently available knowledge about UC by exploring the downstream mechanism of QRXY recipe in UC. Mouse models of UC were established by injections with dextran sulphate sodium (DSS), where the expression of tumor necrosis factor-alpha (TNFα), NLR family pyrin domain containing 3 (NLRP3), and interleukin-1ß (IL-1ß) was determined followed by an analysis of their interactions. The DSS-treated NLRP3 knockout (-/-) Caco-2 cell model was successfully constructed. The in vitro and in vivo effects of the QRXY recipe on UC were investigated with the determination of disease activity index (DAI), histopathological scores, transepithelial electrical resistance, FITC-dextran, as well as cell proliferation and apoptosis. In vivo and in vitro experiments indicated that the QRXY recipe reduced the degree of intestinal mucosal injury of UC mice and functional damage of DSS-induced Caco-2 cells by inhibition of the TNFα/NLRP3/caspase-1/IL-1ß pathway and M1 polarization of macrophages, and TNFα overexpression or NLRP3 knockdown could counterweigh the therapeutic effects of QRXY recipe. To conclude, our study elicited that QRXY inhibited the expression of TNFα and inactivated the NLRP3/Caspase-1/IL-1ß pathway, thereby alleviating intestinal mucosal injury and relieving UC in mice.

3.
Gastroenterol Res Pract ; 2021: 7035557, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691175

RESUMEN

Changes in intestinal microbiota have been linked to the development of diarrhea predominant irritable bowel syndrome (IBS-D). In order to better elucidate the relationship between intestinal microbiota changes and IBS-D, we compared fecal microbiota of IBS-D rats and healthy control using pyrosequencing of bacterial 16S rRNA gene targeted. Furthermore, we explored the effects of different traditional Chinese medicine (TCM) on intestinal microbiota of IBS-D in dose-dependent manner. Our results showed that there was no significant difference in fecal microbial community diversity among the healthy control group, IBS-D rats and IBS-D rats treated with traditional Chinese medicine, but the fecal microbial composition at different taxonomic levels have changed among these groups. Interestingly, the weight of IBS-D rats treated with moderate doses (13.4 g/kg) of TCM increased significantly, and the diarrhea-related symptoms improved significantly, which may be related to the enrichment in Deferribacteres, Proteobacteria, Tenericutes, Lachnospiraceae, and Ruminococcaceae and the reduction in Lactobacillus in fecal samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...