RESUMEN
OBJECTIVE: The aim of this population-based retrospective study was to compare the osteogenic effect of newly formed bone after maxillary sinus floor elevation (MSFE) and simultaneous implantation with or without bone grafts by quantitatively analyzing trabecular bone parameters. METHODOLOGY: A total of 100 patients with missing posterior maxillary teeth who required MSFE and implantation were included in this study. Patients were divided into two groups: the non-graft group (n=50) and the graft group (n=50). Radiographic parameters were measured using cone beam computed tomography (CBCT), and the quality of newly formed bone was analyzed by assessing trabecular bone parameters using CTAn (CTAnalyzer, SkyScan, Antwerp, Belgium) software. RESULTS: In the selected regions of interest, the non-graft group showed greater bone volume/total volume (BV/TV), bone surface/total volume (BS/TV), trabecular number (Tb. N), and trabecular thickness (Tb. Th) than the graft group (p<0.001). The non-graft group showed lower trabecular separation (Tb. Sp) than the graft group (p<0.001). The incidence of perforation and bleeding was higher in the graft group than in the non-graft group (p<0.001), but infection did not significantly differ between groups (p>0.05). Compared to the graft group, the non-graft group showed lower postoperative bone height, gained bone height and apical bone height (p<0.001). CONCLUSION: MSFE with and without bone grafts can significantly improve bone formation. In MSFE, the use of bone grafts hinders the formation of good quality bone, whereas the absence of bone grafts can generate good bone quality and limited bone mass.
Asunto(s)
Elevación del Piso del Seno Maxilar , Humanos , Elevación del Piso del Seno Maxilar/métodos , Estudios Retrospectivos , Osteogénesis , Seno Maxilar/diagnóstico por imagen , Seno Maxilar/cirugía , Hueso EsponjosoRESUMEN
Abstract Objective: The aim of this population-based retrospective study was to compare the osteogenic effect of newly formed bone after maxillary sinus floor elevation (MSFE) and simultaneous implantation with or without bone grafts by quantitatively analyzing trabecular bone parameters. Methodology: A total of 100 patients with missing posterior maxillary teeth who required MSFE and implantation were included in this study. Patients were divided into two groups: the non-graft group (n=50) and the graft group (n=50). Radiographic parameters were measured using cone beam computed tomography (CBCT), and the quality of newly formed bone was analyzed by assessing trabecular bone parameters using CTAn (CTAnalyzer, SkyScan, Antwerp, Belgium) software. Results: In the selected regions of interest, the non-graft group showed greater bone volume/total volume (BV/TV), bone surface/total volume (BS/TV), trabecular number (Tb. N), and trabecular thickness (Tb. Th) than the graft group (p<0.001). The non-graft group showed lower trabecular separation (Tb. Sp) than the graft group (p<0.001). The incidence of perforation and bleeding was higher in the graft group than in the non-graft group (p<0.001), but infection did not significantly differ between groups (p>0.05). Compared to the graft group, the non-graft group showed lower postoperative bone height, gained bone height and apical bone height (p<0.001). Conclusion: MSFE with and without bone grafts can significantly improve bone formation. In MSFE, the use of bone grafts hinders the formation of good quality bone, whereas the absence of bone grafts can generate good bone quality and limited bone mass.
RESUMEN
BACKGROUND: Tissue engineering of skin and mucosa is essential for the esthetic and functional reconstruction of individuals disfigured by trauma, resection surgery, or severe burns while overcoming the limited amount of autograft and donor site morbidity. PURPOSE: We aimed to determine whether a combination of Gelatin-methacryloyl (GelMA) hydrogel scaffold alone or loaded with either dental pulp stem cells (DPSCs) and/or vascular endothelial growth factor (VEGF) could improve skin wound healing in rats. MATERIALS AND METHODS: Four 10 mm full-thickness skin defects were created on the dorsum of 15 Sprague-Dawley rats. The wounds were treated with GelMA alone, GelMA+DPSCs, or GelMA+DPSCs+VEGF. Unprotected wounds were used as controls. Animals were euthanized at 1-, 2-, and 4 weeks post-surgery, and the healing wounds were harvested for clinical, histological, and RT-PCR analysis. RESULTS: No signs of clinical inflammation were observed among all groups. Few and sparse mononuclear inflammatory cells were observed in GelMA+DPSCs and GelMA+DPSCs+VEGF groups at 2 weeks, with complete epithelialization of the wounds. At 4 weeks, the epidermis in GelMA+DPSCs and GelMA+DPSCs+VEGF groups was indistinguishable from the empty defect and GelMA groups. The decrease in cellularity and increase in density of collagen fibers were observed over time in both GelMA+DPSCs and GelMA+DPSCs+VEGF groups but were more evident in the GelMA+DPSCs+VEGF group. The GelMA+DPSCs+VEGF group showed a higher expression of the KER 10 gene at all time points compared with the other groups. Expression of Col1 A1 and TGFß-1 were not statistically different over time neither among the groups. CONCLUSION: GelMA scaffolds loaded with DPSCs, and VEGF accelerated the re-epithelialization of skin wounds.