Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Front Pharmacol ; 15: 1397116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38831880

RESUMEN

Background: Alternol is a small molecular compound isolated from the fermentation of a mutant fungus obtained from Taxus brevifolia bark. Our previous studies showed that Alternol treatment induced reactive oxygen species (ROS)-dependent immunogenic cell death. This study conducted a comprehensive investigation to explore the mechanisms involved in Alternol-induced immunogenic cell death. Methods: Prostate cancer PC-3, C4-2, and 22RV1 were used in this study. Alternol interaction with heat shock proteins (HSP) was determined using CETSA assay. Alternol-regulated ER stress proteins were assessed with Western blot assay. Extracellular adenosine triphosphate (ATP) was measured using ATPlite Luminescence Assay System. Results: Our results showed that Alternol interacted with multiple cellular chaperone proteins and increased their expression levels, including endoplasmic reticulum (ER) chaperone hypoxia up-regulated 1 (HYOU1) and heat shock protein 90 alpha family class B member 1 (HSP90AB1), as well as cytosolic chaperone heat shock protein family A member 8 (HSPA8). These data represented a potential cause of unfolded protein response (UPR) after Alternol treatment. Further investigation revealed that Alternol treatment triggered ROS-dependent (ER) stress responses via R-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α). The double-stranded RNA-dependent protein kinase (PKR) but not activating transcription factor 6 (ATF6) cascades, leading to ATF-3/ATF-4 activation, C/EBP-homologous protein (CHOP) overexpression, and X-box binding protein XBP1 splicing induction. In addition, inhibition of these ER stress responses cascades blunted Alternol-induced extracellular adenosine triphosphate (ATP) release, one of the classical hallmarks of immunogenic cell death. Conclusion: Taken together, our data demonstrate that Alternol treatment triggered multiple ER stress cascades, leading to immunogenic cell death.

2.
Cell Death Dis ; 15(3): 220, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493165

RESUMEN

Pancreatic cancer is one of the most malignant tumor types and is characterized by high metastasis ability and a low survival rate. As a chromatin-binding protein, HMGA2 is widely overexpressed and considered an oncogene with various undefined regulatory mechanisms. Herein, we demonstrated that HMGA2 is highly expressed in pancreatic cancer tissues, mainly distributed in epithelial cells, and represents a subtype of high epithelial-mesenchymal transition. Deletion of HMGA2 inhibits tumor malignancy through cell proliferation, metastasis, and xenograft tumor growth in vivo. Moreover, HMGA2 enhanced the cellular redox status by inhibiting reactive oxygen species and promoting glutathione production. Importantly, ferroptotic cell death was significantly ameliorated in cells overexpressing HMGA2. Conversely, HMGA2 deletion exacerbated ferroptosis. Mechanistically, HMGA2 activated GPX4 expression through transcriptional and translational regulation. HMGA2 binds and promotes cis-element modification in the promoter region of the GPX4 gene by enhancing enhancer activity through increased H3K4 methylation and H3K27 acetylation. Furthermore, HMGA2 stimulated GPX4 protein synthesis via the mTORC1-4EBP1 and -S6K signaling axes. The overexpression of HMGA2 alleviated the decrease in GPX4 protein levels resulting from the pharmacologic inhibition of mTORC1. Conversely, compared with the control, HMGA2 deletion more strongly reduced the phosphorylation of 4EBP1 and S6K. A strong positive correlation between HMGA2 and GPX4 expression was confirmed using immunohistochemical staining. We also demonstrated that HMGA2 mitigated the sensitivity of cancer cells to combination treatment with a ferroptosis inducer and mTORC1 inhibition or gemcitabine. In summary, our results revealed a regulatory mechanism by which HMGA2 coordinates GPX4 expression and underscores the potential value of targeting HMGA2 in cancer treatment.


Asunto(s)
Ferroptosis , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Ferroptosis/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Neoplasias Pancreáticas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina
3.
Biochem Pharmacol ; 220: 116011, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154548

RESUMEN

Sinularin, a natural product that purified from soft coral, exhibits anti-tumor effects against various human cancers. However, the mechanisms are not well understood. In this study, we demonstrated that Sinularin inhibited the viability of human prostate cancer cells in a dose-dependent manner and displayed significant cytotoxicity only at high concentration against normal prostate epithelial cell RWPE-1. Flow cytometry assay demonstrated that Sinularin induced tumor cell apoptosis. Further investigations revealed that Sinularin exerted anti-tumor activity through intrinsic apoptotic pathway along with up-regulation of pro-apoptotic protein Bax and PUMA, inhibition of anti-apoptotic protein Bcl-2, mitochondrial membrane potential collapses, and release of mitochondrial proteins. Furthermore, we illustrated that Sinularin induced cell apoptosis via up-regulating PUMA through inhibition of FOXO3 degradation by the ubiquitin-proteasome pathway. To explore how Sinularin suppress FOXO3 ubiquitin-proteasome degradation, we tested two important protein kinases AKT and ERK that regulate FOXO3 stabilization. The results revealed that Sinularin stabilized and up-regulated FOXO3 via inhibition of AKT- and ERK1/2-mediated FOXO3 phosphorylation and subsequent ubiquitin-proteasome degradation. Our findings illustrated the potential mechanisms by which Sinularin induced cell apoptosis and Sinularin may be applied as a therapeutic agent for human prostate cancer.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Diterpenos , Compuestos Heterocíclicos con 3 Anillos , Neoplasias de la Próstata , Humanos , Masculino , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Proteína Forkhead Box O3 , Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitinas/metabolismo
4.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762463

RESUMEN

Overconsumption of high-fat foods increases the risk of fatty liver disease (FLD) and liver cancer with long pathogenic cycles. It is also known that the intake of the chemical poison nitrosamine and its nanopreparations can promote the development of liver injuries, such as FLD, and hepatic fibrosis, and significantly shorten the formation time of the liver cancer cycle. The present work confirmed that the coexposure of a high-fat diet (HFD) and nano-diethylnitrosamine (nano-DEN) altered the tumor microenvironment and studied the effect of this coexposure on the progression of fatty liver malignant transformation into liver cancer. Gene transcriptomics and immunostaining were used to evaluate the tumor promotion effect of the coexposure in mice. After coexposure treatment, tumor nodules were obviously increased, and inflammation levels were elevated. The liver transcriptomics analysis showed that the expression levels of inflammatory, fatty, and fibrosis-related factors in the coexposed group were increased in comparison with the nano-DEN- and high-fat-alone groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that coexposure aggravated the high expression of genes related to the carcinomatous pathway and accelerated the formation of the tumor microenvironment. The immunohistochemical staining results showed that the coexposure significantly increased the abnormal changes in proteins related to inflammation, proliferation, aging, and hypoxia in mouse liver tissues. The coexposure of high fat and nano-DEN aggravated the process of steatosis and carcinogenesis. In conclusion, the habitual consumption of pickled foods containing nitrosamines in a daily HFD significantly increases the risk of liver pathology lesions progressing from FLD to liver cancer.

5.
Life (Basel) ; 13(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240870

RESUMEN

HMGA1 is a chromatin-binding protein and performs its biological function by remodeling chromatin structure or recruiting other transcription factors. However, the role of abnormally high level of HMGA1 in cancer cells and its regulatory mechanism still require further investigation. In this study, we performed a prognostic analysis and showed that high level of either HMGA1 or FOXM1 was associated with poor prognosis in various cancers based on the TCGA database. Furthermore, the expression pattern of HMGA1 and FOXM1 showed a significant strong positive correlation in most type of cancers, especially lung adenocarcinoma, pancreatic cancer and liver cancer. Further analysis of the biological effects of their high correlation in cancers suggested that cell cycle was the most significant related pathway commonly regulated by HMGA1 and FOXM1. After knockdown of HMGA1 and FOXM1 by specific siRNAs, an obvious increased G2/M phase was observed in the siHMGA1 and siFOXM1 groups compared to the siNC group. The expression levels of key G2/M phase regulatory genes PLK1 and CCNB1 were significantly downregulated. Importantly, HMGA1 and FOXM1 were identified to form a protein complex and co-located in the nucleus based on co-immunoprecipitation and immunofluorescence staining, respectively. Thus, our results provide the basic evidence that HMGA1 and FOXM1 cooperatively accelerate cell cycle progression by up-regulating PLK1 and CCNB1 to promote cancer cell proliferation.

6.
Aging (Albany NY) ; 14(17): 7093-7108, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103228

RESUMEN

Bladder cancer (BC) is one of the most lethal malignancies worldwide. The poor survival may be due to a high proportion of tumor metastasis. RON and CXCR4 are the key regulators of cell motility in BC, while the relationship between RON and CXCR4 remains elusive. In the present study, immunohistochemistry analysis of BC and adjacent normal tissues found that higher RON expression was positively correlated with CXCR4 expression. Inhibiting and replenishing RON level were used to regulate CXCR4 expression, observing the effects on migration and invasion of BC cells. Overexpression of RON reversed the inhibited cell migration and invasion following siCXCR4 treatment. Conversely, overexpression of CXCR4 restored the inhibition of cell migration and invasion caused by shRON. The activation of RON-MAPK/RSK/CREB pathway was demonstrated in BC cells under MSP treatment. Dual luciferase and CHIP assay showed that p-CREB targeted CXCR4 by binding to its CRE sequence. RON knockdown suppressed BC tumor growth in xenograft mouse tumors, accompanied by reduced expression of CXCR4. In conclusion, our data adds evidence that RON, a membrane tyrosine kinase receptor, promotes BC migration and invasion not only by itself, but also by activating MAPK/RSK/CREB signaling pathway to enhance CXCR4 expression.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Proteínas Tirosina Quinasas Receptoras/genética , Receptores CXCR4/genética , Transducción de Señal , Neoplasias de la Vejiga Urinaria/genética
7.
Ann Hepatol ; 27(4): 100697, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35297369

RESUMEN

INTRODUCTION AND OBJECTIVES: Type 2 diabetes mellitus (T2DM) increases the occurrence and mortality of liver cancer. Insulin growth factor (IGF) plays a crucial role in the development of diabetes and liver cancer, and specifically, IGF-1 may be involved in the development of liver cancer with preexisting T2DM. Autophagy contributes to cancer cell survival and apoptosis. However, the relationship between IGF-1 and autophagy has rarely been evaluated. The purpose of this study was to investigate whether IGF-1 promotes the development of liver cancer in T2DM patients by promoting autophagy. MATERIALS AND METHODS: Thirty-three hepatocellular carcinoma (HCC) patients with T2DM and 33 age-matched patients with HCC without T2DM were included in this study. We analyzed the expression of IGF-1 and autophagy-related LC3 and p62 mRNA and the prognosis of two groups. In vitro, we stimulated HepG2 cells with IGF-1 and then detected changes in autophagy and cell proliferation, apoptosis, and migration in the presence/absence of wortmannin, an autophagy inhibitor. RESULTS: IGF-1 promoted autophagy, resulting in inhibition of apoptosis and induction of growth and migration of HepG2 cells. Inhibition of autophagy by wortmannin impaired IGF-1 function. Higher expression of IGF-1 was detected in HCC patients with T2DM. IGF-1 expression was higher in liver cancer tissue compared to paracancerous tissue. Elevated IGF-1 was associated with a poor prognosis in patients with HCC. CONCLUSIONS: IGF-1 participates in the development of liver cancer by inducing autophagy. Elevated IGF-1 was a prognostic factor for patients with HCC, especially when accompanied by T2DM.


Asunto(s)
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Factor I del Crecimiento Similar a la Insulina , Neoplasias Hepáticas , Autofagia , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Insulina , Factor I del Crecimiento Similar a la Insulina/genética , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/patología , Wortmanina
8.
Front Oncol ; 11: 740868, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589437

RESUMEN

PURPOSE: The purpose of this study is to explore the value of combining bpMRI and clinical indicators in the diagnosis of clinically significant prostate cancer (csPCa), and developing a prediction model and Nomogram to guide clinical decision-making. METHODS: We retrospectively analyzed 530 patients who underwent prostate biopsy due to elevated serum prostate specific antigen (PSA) levels and/or suspicious digital rectal examination (DRE). Enrolled patients were randomly assigned to the training group (n = 371, 70%) and validation group (n = 159, 30%). All patients underwent prostate bpMRI examination, and T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) sequences were collected before biopsy and were scored, which were respectively named T2WI score and DWI score according to Prostate Imaging Reporting and Data System version 2 (PI-RADS v.2) scoring protocol, and then PI-RADS scoring was performed. We defined a new bpMRI-based parameter named Total score (Total score = T2WI score + DWI score). PI-RADS score and Total score were separately included in the multivariate analysis of the training group to determine independent predictors for csPCa and establish prediction models. Then, prediction models and clinical indicators were compared by analyzing the area under the curve (AUC) and decision curves. A Nomogram for predicting csPCa was established using data from the training group. RESULTS: In the training group, 160 (43.1%) patients had prostate cancer (PCa), including 128 (34.5%) with csPCa. Multivariate regression analysis showed that the PI-RADS score, Total score, f/tPSA, and PSA density (PSAD) were independent predictors of csPCa. The prediction model that was defined by Total score, f/tPSA, and PSAD had the highest discriminatory power of csPCa (AUC = 0.931), and the diagnostic sensitivity and specificity were 85.1% and 87.5%, respectively. Decision curve analysis (DCA) showed that the prediction model achieved an optimal overall net benefit in both the training group and the validation group. In addition, the Nomogram predicted csPCa revealed good estimation when compared with clinical indicators. CONCLUSION: The prediction model and Nomogram based on bpMRI and clinical indicators exhibit a satisfactory predictive value and improved risk stratification for csPCa, which could be used for clinical biopsy decision-making.

9.
Oncol Lett ; 22(4): 691, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34457046

RESUMEN

Colorectal cancer is a common malignant tumor of the gastrointestinal tract. Currently, the main treatment is surgical resection, which can be combined with other treatments. However, treatment efficacy is poor, and colorectal cancer is prone to relapse and metastasis; thus, identifying an effective anti-cancer drug is an urgent requirement. The present study examined the antagonistic effect of penicillin on cultured colorectal cancer cells and the related mechanism. A MTT assay was used to assess the growth of the colorectal cancer cells treated with penicillin and to determine the optimal drug concentration. The wound healing and Transwell invasion assays were performed to investigate the effect of penicillin on the migration and invasion of the colorectal cancer cells. Live cell mitochondrial energy metabolism analysis was performed to detect changes in mitochondrial energy metabolism of the colorectal cancer cells, while western blot analysis was used to measure the expression of cytochrome c and autophagy-related protein, LC3. RFP-GFP-LC3 lentivirus was used to detect autophagic flux, and autophagosomes were observed using a transmission electron microscope, while flow cytometry was used to analyze the effect of penicillin on cell cycle progression and apoptosis of the colorectal cancer cells. After penicillin treatment, the growth, migration and invasion ability of the colorectal cancer cells were inhibited. The mitochondrial energy metabolism of the cell was impaired, and the basic respiratory capacity, maximum respiratory capacity, respiratory potential, and ATP production were all reduced. The protein expression levels of the autophagy-related proteins, LC3-II/LC3-I increased in a dose- and time-dependent manner. In addition, autophagy flux and the number of autophagosomes increased, and mitochondrial structural damage was observed. The cell cycle was arrested at the G1 phase, the number of early apoptotic cells increased and the protein expression level of cleaved caspase-3 increased, while penicillin-induced apoptosis was blocked by the autophagy inhibitor 3-MA. In conclusion, penicillin disrupted mitochondrial function and energy metabolism in the colorectal cancer cells, which resulted in the induction of autophagic apoptosis and ultimately the inhibition of cancer cell growth and metastasis.

10.
J Cell Mol Med ; 25(7): 3300-3311, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33611811

RESUMEN

Ferroptosis is an iron-dependent mode of non-apoptotic cell death characterized by accumulation of lipid reactive oxygen species (ROS). As a regulator of ROS, cytoglobin (CYGB) plays an important role in oxygen homeostasis and acts as a tumour suppressor. However, the mechanism by which CYGB regulates cell death is largely unknown. Here, we show that CYGB overexpression increased ROS accumulation and disrupted mitochondrial function as determined by the oxygen consumption rate and membrane potential. Importantly, ferroptotic features with accumulated lipid ROS and malondialdehyde were observed in CYGB-overexpressing colorectal cancer cells. Moreover, CYGB significantly increased the sensitivity of cancer cells to RSL3- and erastin-induced ferroptotic cell death. Mechanically, both YAP1 and p53 were significantly increased based on the RNA sequencing. The knock-down of YAP1 alleviated production of lipid ROS and sensitivity to ferroptosis in CYGB overexpressed cells. Furthermore, YAP1 was identified to be inhibited by p53 knock-down. Finally, high expression level of CYGB had the close correlation with key genes YAP1 and ACSL4 in ferroptosis pathway in colon cancer based on analysis from TCGA data. Collectively, our results demonstrated a novel tumour suppressor role of CYGB through p53-YAP1 axis in regulating ferroptosis and suggested a potential therapeutic approach for colon cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias del Colon/metabolismo , Citoglobina/genética , Ferroptosis , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Carbolinas/toxicidad , Neoplasias del Colon/genética , Citoglobina/metabolismo , Células HCT116 , Humanos , Piperazinas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Regulación hacia Arriba , Proteínas Señalizadoras YAP
11.
Cell Mol Neurobiol ; 41(2): 293-307, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32382851

RESUMEN

The main pathological features of ischemic stroke include neuronal damage and blood-brain barrier (BBB) dysfunction. Previous studies have shown that Evans Blue, a dye used to probe BBB integrity, could enter the brain only during the pathological status of ischemic stroke, indicating the potential pathologically activated therapeutic use of this chemical to treat ischemic stroke. In this study, we have reported that Evans Blue could produce in vitro neuroprotective effects against iodoacetic acid (IAA)-induced hypoxia neuronal death in HT22 cells. We further found that P2X purinoreceptor 4 (P2X4R), a subtype of ATP-gated cation channel, was expressed in HT22 cells. Evans Blue could prevent IAA-induced increase of P2X4R mRNA and protein expression. Interestingly, shRNA of P2X4R could protect against IAA-induced activation of p38, and SB203580, a specific inhibitor of p38, could reverse IAA-induced neurotoxicity, indicating that p38 is a downstream signaling molecule of P2X4R. Molecular docking analysis further demonstrated the possible interaction between Evans Blue and the ATP binding site of P2X4R. Most importantly, pre-treatment of Evans Blue could largely reduce neurological and behavioral abnormity, and decrease brain infarct volume in middle cerebral artery occlusion/reperfusion (MCAO) rats. All these results strongly suggested that Evans Blue could exert neuroprotective effects via inhibiting the P2X4R/p38 pathway, possibly by acting on the ATP binding site of P2X4R, indicating that Evans Blue might be further developed as a pathologically activated therapeutic drug against ischemic stroke.


Asunto(s)
Azul de Evans/farmacología , Fármacos Neuroprotectores/farmacología , Receptores Purinérgicos P2X4/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Infarto Encefálico/complicaciones , Infarto Encefálico/patología , Muerte Celular/efectos de los fármacos , Línea Celular , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Ácido Yodoacético , Masculino , Ratones , Modelos Biológicos , Simulación del Acoplamiento Molecular , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
12.
Front Cell Dev Biol ; 9: 739511, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35059395

RESUMEN

Gestational diabetes mellitus (GDM) refers to different degrees of glucose tolerance abnormalities that occur during pregnancy or are discovered for the first time, which can have a serious impact on the mother and the offspring. The screening of GDM mainly relies on the oral glucose tolerance test (OGTT) at 24-28 weeks of gestation. The early diagnosis and intervention of GDM can greatly improve adverse pregnancy outcomes. However, molecular markers for early prediction and diagnosis of GDM are currently lacking. Therefore, looking for GDM-specific early diagnostic markers has important clinical significance for the prevention and treatment of GDM and the management of subsequent maternal health. Circular RNA (circRNA) is a new type of non-coding RNA. Recent studies have found that circRNAs were involved in the occurrence and development of malignant tumors, metabolic diseases, cardiovascular and cerebrovascular diseases, etc., and could be used as the molecular marker for early diagnosis. Our previous research showed that circRNAs are differentially expressed in serum of GDM pregnant women in the second and third trimester, placental tissues during cesarean delivery, and cord blood. However, the mechanism of circular RNA in GDM still remains unclear. This article focuses on related circRNAs involved in insulin resistance and ß-cell dysfunction, speculating on the possible role of circRNAs in the pathophysiology of GDM under the current research context, and has the potential to serve as early molecular markers for the diagnosis of GDM.

13.
Life Sci ; 259: 118383, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32896555

RESUMEN

AIMS: Previous studies have shown that the widespread use of estrogen preparations can cause adverse outcomes such as thrombosis and cardiovascular disease. Autophagy is a biochemical process necessary to maintain cell homeostasis. The present study investigated whether E-2 mediates autophagy-induced endothelial cell dysfunction. The role of aspirin in this process was then studied. MAIN METHODS: Western blot, fluorescence microscopy, electron transmission microscopy, plasma construction and transfection, vasoreactivity study in wire myograph are all used in this study. KEY FINDINGS: We found that E-2 activated the PI3K/mTOR signaling pathway and inhibited the formation of the Atg14L-Beclin1-Vps34-Vps15 complex, thereby inhibiting autophagy. Aspirin promoted Beclin1 phosphorylation in autophagy initiation complexes and enhanced autophagy. Furthermore, E-2 treatment of HAECs resulted in endothelial dysfunction by inhibiting autophagy and leading to accumulation of α-smooth muscle actin (α-SMA). E-2 inhibited the activation of eNOS and reduced the expression of eNOS protein. In the mouse aortic vascular function test, E-2 disrupted endothelium-dependent vasodilation. An α-SMA-shRNA lentivirus eliminated the disruption to endothelium-dependent vasodilation by E-2. Aspirin inhibited α-SMA accumulation by enhancing autophagy, reversed endothelial functional impairment caused by E-2, and promoted endothelium-dependent vasodilation. SIGNIFICANCE: This study provides new evidence that E-2 inhibits autophagy and induces abnormal accumulation of α-SMA, resulting in endothelial cell dysfunction and affecting vasodilation. Aspirin can effectively restore the endothelial cell function disrupted E-2.


Asunto(s)
Actinas/metabolismo , Aspirina/farmacología , Autofagia/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Estradiol/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo , Animales , Western Blotting , Células Cultivadas , Endotelio Vascular/ultraestructura , Femenino , Humanos , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Fosforilación/efectos de los fármacos
14.
J Clin Lab Anal ; 34(9): e23378, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32462718

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) perform pivotal regulatory roles in tumor development. Our previous work revealed that the lncRNA gastric cancer-associated transcript 3 (GACAT3) was significantly overexpressed and associated with tumor size and metastasis in gastric cancer. METHODS: Total RNAs were extracted from colorectal cancer (CRC) and reverse transcribed, and then quantitative real-time PCR (qRT-PCR) was conducted. Cell counting was performed to assess the effect of GACAT3 on CRC cell line proliferation. Bioinformatics prediction, dual luciferase assay, miRNA mimics, siRNAs, and transfection experiments were applied to determine whether GACAT3 and LINC00152 are reciprocally regulated by miR-103. The relationship between their expression levels and clinicopathological factors of patients was explored. A receiver operating characteristic (ROC) curve was used to assess the potential diagnostic value of GACAT3 and LINC00152. RESULTS: GACAT3 was identified to be highly expressed in CRC tissues and associated with cell proliferation. Furthermore, we demonstrated that GACAT3 acted as a competing endogenous RNA of LINC00152 and they were both regulated by miR-103. Moreover, analysis of clinicopathological characteristics revealed that GACAT3 and LINC00152 were positively correlated with the depth of invasion, TNM stage, lymph node metastasis, and CA19-9 level. Importantly, a combination of GACAT3 and LINC00152 showed a superior diagnostic capacity compared with the use of the two molecules alone. CONCLUSION: Our work shows that GACAT3 and LINC00152 are both overexpressed in CRC and they act as a ceRNA network. Therefore, our data suggest that GACAT3 and LINC00152 may be a promising potential diagnostic biomarker for CRC.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , ARN Largo no Codificante/genética , Apoptosis , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas
15.
Autoimmunity ; 53(4): 210-217, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32129682

RESUMEN

Background: Chymase 1 (CMA1), a gene known to be expressed in mast cells (MCs), is largely linked to immunity. However, the relationship between CMA1 and prognosis of multiple tumours and tumour-infiltrating lymphocytes (TILs) remains elusive.Methods: The differential expressions of CMA1 in different tumours and their corresponding normal tissues were evaluated via exploring Tumour Immune Estimation Resource (TIMER) and Oncomine database; the correlation within expression level of CMA1 and outcome of cancer patients was evaluated via Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA) database; the correlation between CMA1 and tumour immune cell infiltration was further investigated by TIMER; additionally, the correlation between CMA1 and gene signature pattern of immune infiltration were checked using TIMER and GEPIA.Results: There were significant differences in CMA1 expression levels between gastric cancer (GC) tissues and adjacent normal tissues. The high expression of CMA1 was closed related to poor overall survival (OS) and progression-free survival (PFS) in patients with GC (OS HR = 1.50, p = .00015; PFS HR = 1.33, p = .016). Especially, in GC patients at N1, N2 and N3 stages, high CMA1 expression was correlated with poor OS and PFS, but not with NO (p = .15, .09). The expression of CMA1 was positively associated with the levels of infiltrated CD4+, CD8+ T cells, neutrophils, macrophages, and dendritic cells (DCs) in GC. Whereas, CMA1 expression was considerably associated with various immune markers.Conclusion: CMA1 is a key gene whose expression level is significantly correlated with GC prognosis and infiltration levels of CD8+, CD4+ T cells, neutrophils, macrophages, and DCs in GC. In addition, the expression of CMA1 may be involved in regulating tumour-associated macrophages (TAMs), dendritic cells, exhausted T cells and regulatory T cells in GC. It suggests that CMA1 could be utilized as a prognostic marker and a sign of immune infiltration in GC.


Asunto(s)
Biomarcadores de Tumor/genética , Quimasas/genética , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/inmunología , Macrófagos Asociados a Tumores/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Supervivencia sin Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Macrófagos/inmunología , Masculino , Neutrófilos/inmunología , Pronóstico , Neoplasias Gástricas/mortalidad
16.
Yonsei Med J ; 60(11): 1013-1020, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31637882

RESUMEN

PURPOSE: Effective biomarkers and models are needed to improve the prognostic prospects of clear cell renal cell carcinoma (ccRCC). The purpose of this work was to identify DNA methylation biomarkers and to evaluate the utility of DNA methylation analysis for ccRCC prognosis. MATERIALS AND METHODS: An overview of genome-wide methylation of ccRCC tissues derived from The Cancer Genome Atlas (TCGA) database was download for analysis. DNA methylation signatures were identified using Cox regression methods. The potential clinical significance of methylation biomarkers acting as a novel prognostic markers was analyzed using the Kaplan-Meier method and receiver operating characteristic (ROC) curves. RESULTS: This study analyzed data for 215 patients with information on 23171 DNA methylation sites and identified a two-DNA methylation signature (cg18034859, cg24199834) with the help of a step-wise multivariable Cox regression model. The area under the curve of ROCs for the two-DNA methylation signature was 0.819. The study samples were stratified into low- and high-risk classifications based on an optimal threshold, and the two groups showed markedly different survival rates. Moreover, the two-DNA methylation marker was suitable for patients of varying ages, sex, stages (I and IV), and histologic grade (G2). CONCLUSION: The two-DNA methylation signature was deemed to be a potential novel prognostic biomarker of use in increasing the accuracy of predicting overall survival of ccRCC patients.


Asunto(s)
Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/genética , Metilación de ADN/genética , Neoplasias Renales/diagnóstico , Neoplasias Renales/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/patología , Bases de Datos Genéticas , Femenino , Humanos , Estimación de Kaplan-Meier , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Análisis Multivariante , Pronóstico , Curva ROC , Factores de Riesgo , Tasa de Supervivencia
17.
J Clin Lab Anal ; 33(5): e22874, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30843267

RESUMEN

BACKGROUND: Kawasaki disease is a childhood systemic vasculitis that causes coronary artery abnormalities. The etiology remains unknown and there are no specific diagnostic tests. Circular non-coding RNAs are a special class of endogenous RNAs that display some characteristics of an ideal biomarker. However, few studies have examined the expression of circRNAs in the serum of Kawasaki disease (KD) patients. The aim of this study was to identify circRNAs in the serum that can serve as potential biomarkers for KD diagnosis. METHODS: The cases were children diagnosed with KD (n = 56). The controls comprised healthy children (n = 56). Blood was collected from the patients before and after intravenous immunoglobulin therapy, and from the healthy controls. Levels of circANRIL and hsa_circ_0123996 in the serum were measured by quantitative reverse transcription PCR. Then, the potential relationship between serum circRNA levels and patients' biochemical parameter levels was investigated. Receiver operating characteristic curves were constructed for evaluating the diagnostic value of these circRNAs. RESULTS: The serum levels of circANRIL were lower in patients with KD before therapy than in the controls, but became higher in the patients after therapy than before therapy. The serum levels of hsa_circ_0123996 were higher in patients with KD before therapy than in healthy controls. CONCLUSION: Our study indicated that the circANRIL and hsa_circ_0123996 levels in the serum of patients with KD were significantly different from those in healthy individuals. circANRIL and hsa_circ_0123996 may become potential biomarkers for early KD diagnosis.


Asunto(s)
Síndrome Mucocutáneo Linfonodular/genética , ARN Circular/sangre , ARN Largo no Codificante/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Preescolar , Femenino , Regulación de la Expresión Génica , Humanos , Inmunoglobulinas/administración & dosificación , Inmunoglobulinas/uso terapéutico , Lactante , Masculino , Síndrome Mucocutáneo Linfonodular/sangre , Síndrome Mucocutáneo Linfonodular/tratamiento farmacológico , ARN Circular/genética , ARN Largo no Codificante/genética , Curva ROC
18.
Gene ; 678: 164-171, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30098426

RESUMEN

Long non-coding RNAs (lncRNAs) have been demonstrated to perform important roles in cancer development. Previously, we have shown that lncRNA gastric cancer-associated transcript 3 (GACAT3) is overexpressed in gastric cancer and acts as a downstream target of interleukin 6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling. However, the role of GACAT3 in regulating gastric cancer cell growth remains unclear. In this study, we demonstrate that GACAT3 acts as a competing endogenous RNA of high mobility group A1 (HMGA1), a typical oncogene that is overexpressed in most types of cancer, based on a search for common miRNA-binding sites and on experiments involving in vitro cell transfection with synthesized miRNA mimics. Furthermore, knockdown of GACAT3 by its specific siRNA resulted in significantly decreased cell proliferation in gastric cancer cells, similar to the effect of an HMGA1 knockdown. Moreover, GACAT3 overexpression alleviated the apoptosis induced by cucurbitacin B, which is a widely used anticancer drug. Mechanistically, GACAT3 amplified STAT3 expression and decreased the level of the apoptosis gene bcl-2-associated X protein (BAX). Thus, our study provides fundamental information regarding GACAT3, which could be a valuable target for gastric cancer therapy.


Asunto(s)
Proteína HMGA1a/genética , ARN Largo no Codificante/genética , Neoplasias Gástricas/genética , Triterpenos/farmacología , Regulación hacia Arriba , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-6/genética , Factor de Transcripción STAT3/genética , Proteína X Asociada a bcl-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...