Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cancer Res Clin Oncol ; 150(5): 259, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753081

RESUMEN

High mobility group AT-hook 2 (HMGA2) is a member of the non-histone chromosomal high mobility group (HMG) protein family, which participate in embryonic development and other biological processes. HMGA2 overexpression is associated with breast cancer (BC) cell growth, proliferation, metastasis, and drug resistance. Furthermore, HMGA2 expression is positively associated with poor prognosis of patients with BC, and inhibiting HMGA2 signaling can stimulate BC cell progression and metastasis. In this review, we focus on HMGA2 expression changes in BC tissues and multiple BC cell lines. Wnt/ß-catenin, STAT3, CNN6, and TRAIL-R2 proteins are upstream mediators of HMGA2 that can induce BC invasion and metastasis. Moreover, microRNAs (miRNAs) can suppress BC cell growth, invasion, and metastasis by inhibiting HMGA2 expression. Furthermore, long noncoding RNAs (LncRNAs) and circular RNAs (CircRNAs) mainly regulate HMGA2 mRNA and protein expression levels by sponging miRNAs, thereby promoting BC development. Additionally, certain small molecule inhibitors can suppress BC drug resistance by reducing HMGA2 expression. Finally, we summarize findings demonstrating that HMGA2 siRNA and HMGA2 siRNA-loaded nanoliposomes can suppress BC progression and metastasis.


Asunto(s)
Neoplasias de la Mama , Proteína HMGA2 , Humanos , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Resistencia a Antineoplásicos/genética
2.
J Pers Med ; 14(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38392565

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the leading cause of cancer deaths, and treatment, especially in the metastatic stage, is challenging. Immune checkpoint inhibitors (ICIs) have revolutionized CRC treatment, but response varies, emphasizing the need for effective biomarkers. This study explores SPEN mutations as potential biomarkers. METHODS: Using data from the Memorial Sloan Kettering Cancer Center (MSKCC) and The Cancer Genome Atlas (TCGA)-Colorectal Cancer, this research applied bioinformatics tools and statistical analysis to SPEN (Split Ends) mutant and wild-type CRC patients treated with ICIs. Focus areas included mutation rates, immune cell infiltration, and DNA damage response pathways. RESULTS: The SPEN mutation rate was found to be 13.8% (15/109 patients) in the MSKCC cohort and 6.65% (35/526 patients) in the TCGA cohort. Our findings indicate that CRC patients with SPEN mutations had a longer median overall survival (OS) than the wild-type group. These patients also had higher tumor mutational burden (TMB), microsatellite instability (MSI) scores, and programmed death-ligand 1 (PD-L1) expression. SPEN mutants also exhibited increased DNA damage response (DDR) pathway mutations and a greater presence of activated immune cells, like M1 macrophages and CD8+ T cells, while wild-type patients had more resting/suppressive immune cells. Furthermore, distinct mutation patterns, notably with TP53, indicated a unique molecular subtype in SPEN-mutated CRC. CONCLUSIONS: We conclude that SPEN mutations might improve ICI efficacy in CRC due to increased immunogenicity and an inflammatory tumor microenvironment. SPEN mutations could be predictive biomarkers for ICI responsiveness, underscoring their value in personalized therapy and highlighting the importance of genomic data in clinical decisions. This research lays the groundwork for future precision oncology studies.

3.
Front Oncol ; 14: 1320887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361784

RESUMEN

Epithelial-mesenchymal transition (EMT) is a complex physiological process that transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction of EMT promotes the invasion and metastasis of cancer. The architectural transcription factor high mobility group AT-hook 2 (HMGA2) is highly overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer, breast cancer, uterine leiomyomas) and significantly correlated with poor survival rates. Evidence indicated that HMGA2 overexpression markedly decreased the expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin (VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1 (ZEB1) by targeting the transforming growth factor beta/SMAD (TGFß/SMAD), mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/ß-catenin) signaling pathways. Furthermore, a new class of non-coding RNAs (miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. In this review, we discuss alterations in the expression of HMGA2 in various types of cancer. Furthermore, we highlight the role of HMGA2-induced EMT in promoting tumor growth, migration, and invasion. More importantly, we discuss extensively the mechanism through which HMGA2 regulates the EMT process and invasion in most cancers, including signaling pathways and the interacting RNA signaling axis. Thus, the elucidation of molecular mechanisms that underlie the effects of HMGA2 on cancer invasion and patient survival by mediating EMT may offer new therapeutic methods for preventing cancer progression.

4.
Front Immunol ; 14: 1238667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942328

RESUMEN

Purpose: This multicenter, open-label, phase Ib/II study aimed to assess the efficacy and safety of cadonilimab, a humanized, tetravalent, bispecific antibody plus lenvatinib in first-line treatment of advanced hepatocellular carcinoma (aHCC). Methods: Patients with histologically confirmed aHCC were included to receive either 6 mg/kg cadonilimab every 2 weeks plus lenvatinib (cohort A) or 15 mg/kg cadonilimab every 3 weeks plus lenvatinib (cohort B). The primary endpoint was objective response rate (ORR) by RECIST v1.1, while the secondary endpoints were safety, progression-free survival (PFS), overall survival (OS), disease control rate (DCR), duration of response (DoR), and time to response (TTR). Results: A total of 59 patients were enrolled (31 in cohort A and 28 in cohort B). The median follow-up time was 27.4 months as of the data cutoff date (July 28, 2023). The ORR in cohort A was 35.5% (95% CI: 19.2, 54.6) and that in cohort B was 35.7% (95% CI: 18.6, 55.9), and the median DoR was 13.6 months (95% CI: 4.14, NE) and 13.67 months (95% CI: 3.52, NE), respectively. The median PFS was 8.6 months (95% CI: 5.2, 15.2) and 9.8 months (95% CI: 6.9, 15.2), respectively. The median OS was 27.1 months (95% C: 15.7, NE) for cohort A, while it was not reached for cohort B. Grade ≥ 3 treatment-related adverse events (TRAEs) were reported in 66.1% of patients, with serious TRAEs occurring in 39.0% of cases. Decreased platelet count (47.5%), proteinuria (45.8%), hypertension (44.1%), and white blood cell count (44.1%) were the most common TRAEs. Conclusion: This novel combination therapy showed promising efficacy and manageable toxicity that could provide an option in first-line setting of aHCC. Clinical Trial Registration: [www.ClinicalTrials.gov], NCT04444167.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Terapia Combinada , Empatía , Neoplasias Hepáticas/tratamiento farmacológico
5.
Environ Sci Pollut Res Int ; 30(41): 94790-94802, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37540421

RESUMEN

Rapid economic development has increased the accumulation of dissolved organic matter (DOM) and heavy metals in aquatic environments. In addition, Microcystis aeruginosa can cause the outbreak of cyanobacteria bloom and can produce microcystin, which poses a threat to human water safety. Therefore, this study analyzed the biochemical and molecular assays of DOM (0, 1, 3, 5, 8, 10 mg C L-1) extracted from four different sources on the toxicity of cadmium (Cd) to M. aeruginosa. The results showed that the addition of different concentrations of DOM from sediment, biochar, and humic acid alleviated the toxicity of Cd to M. aeruginosa. But the addition of rice hulls DOM at high concentrations (8 and 10 mg L-1) significantly reduced the normal growth and metabolic activities of M. aeruginosa. DOM from four different sources promoted the expression level of microcystin-related gene mcyA and the production of microcystin-leucine-arginine (MC-LR), and mcyA was positively correlated with MC-LR. DOM from biochar, sediment, and humic acid were able to bind Cd through complexation. The results will help to understand the toxic effects of heavy metals on toxic-producing cyanobacteria in the presence of DOM, and provide certain reference for the evaluation of water environmental health.


Asunto(s)
Cianobacterias , Metales Pesados , Microcystis , Humanos , Cadmio/metabolismo , Materia Orgánica Disuelta , Microcistinas/metabolismo , Sustancias Húmicas , Cianobacterias/metabolismo , Metales Pesados/metabolismo
6.
J Cancer Res Clin Oncol ; 149(11): 8403-8413, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37084112

RESUMEN

PURPOSE: To explore the optimal timing of locoregional therapy in patients with colorectal cancer (CRC) recurrence after radical resection and initially unresectable liver metastases but no other metastases and whether maintenance therapy should be performed after achieving no evidence of disease (NED). METHODS: This study was jointly carried out in six medical institutions in China to collect the clinical data of patients with primary CRC from January 2015 to December 2021. Research participants were identified according to the inclusion criteria of this study for statistical analysis of the clinical characteristics and recurrence time. RESULTS: 625 patients CRC with metachronous initially unresectable liver metastases but no other metastases were enrolled. Multivariate analysis showed that the number of metastases in the liver and the time from the start of first-line chemotherapy to locoregional therapy significantly affected the progression-free survival (PFS, P < 0.05) following the first-line treatment, and continued maintenance therapy reduced the risk of tumor progression in the patients (P < 0.05). Furthermore, stratified analysis showed that the median PFS of patients with 3-5 metastases in the liver was maximized when the time from the start of first-line chemotherapy to locoregional therapy was 3-4 months. Patients with > 6 metastases in the liver should extend the duration between the start of first-line chemotherapy and locoregional therapy to more than four months. Similarly, with the significant increase in the number of metastases in the liver, subsequent maintenance therapy significantly extended the PFS of the patients. CONCLUSIONS: The overall therapeutic plan in patients with CRC recurrence after radical resection and initially unresectable liver metastases but no other metastases should consider the individual patients' situations, especially the number of metastases in the liver at initial recurrence.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Neoplasias Colorrectales/patología , Estudios Retrospectivos , Recurrencia Local de Neoplasia/patología , Neoplasias Hepáticas/secundario , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
8.
Theranostics ; 13(1): 77-94, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36593968

RESUMEN

Rationale: microRNAs (miRNAs) are frequently deregulated and play important roles in the pathogenesis and progression of acute myeloid leukemia (AML). miR-182 functions as an onco-miRNA or tumor suppressor miRNA in the context of different cancers. However, whether miR-182 affects the self-renewal of leukemia stem cells (LSCs) and normal hematopoietic stem progenitor cells (HSPCs) is unknown. Methods: Bisulfite sequencing was used to analyze the methylation status at pri-miR-182 promoter. Lineage-negative HSPCs were isolated from miR-182 knockout (182KO) and wild-type (182WT) mice to construct MLL-AF9-transformed AML model. The effects of miR-182 depletion on the overall survival and function of LSC were analyzed in this mouse model in vivo. Results: miR-182-5p (miR-182) expression was lower in AML blasts than normal controls (NCs) with hypermethylation observed at putative pri-miR-182 promoter in AML blasts but unmethylation in NCs. Overexpression of miR-182 inhibited proliferation, reduced colony formation, and induced apoptosis in leukemic cells. In addition, depletion of miR-182 accelerated the development and shortened the overall survival (OS) in MLL-AF9-transformed murine AML through increasing LSC frequency and self-renewal ability. Consistently, overexpression of miR-182 attenuated AML development and extended the OS in the murine AML model. Most importantly, miR-182 was likely dispensable for normal hematopoiesis. Mechanistically, we identified BCL2 and HOXA9 as two key targets of miR-182 in this context. Most importantly, AML patients with miR-182 unmethylation had high expression of miR-182 followed by low protein expression of BCL2 and resistance to BCL2 inhibitor venetoclax (Ven) in vitro. Conclusions: Our results suggest that miR-182 is a potential therapeutic target for AML patients through attenuating the self-renewal of LSC but not HSPC. miR-182 promoter methylation could determine the sensitivity of Ven treatment and provide a potential biomarker for it.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , MicroARNs , Animales , Ratones , Línea Celular Tumoral , ADN , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroARNs/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
9.
Microbiol Spectr ; 11(1): e0356222, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36511681

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been an unprecedented public health disaster in human history, and its spike (S) protein is the major target for vaccines and antiviral drug development. Although widespread vaccination has been well established, the viral gene is prone to rapid mutation, resulting in multiple global spread waves. Therefore, specific antivirals are needed urgently, especially those against variants. In this study, the domain of the receptor binding motif (RBM) and fusion peptide (FP) (amino acids [aa] 436 to 829; denoted RBMFP) of the SARS-CoV-2 S protein was expressed as a recombinant RBMFP protein in Escherichia coli and identified as being immunogenic and antigenically active. Then, the RBMFP proteins were used for phage display to screen the novel affibody. After prokaryotic expression and selection, four novel affibody molecules (Z14, Z149, Z171, and Z327) were obtained. Through surface plasmon resonance (SPR) and pseudovirus neutralization assay, we showed that affibody molecules specifically bind to the RBMFP protein with high affinity and neutralize against SARS-CoV-2 pseudovirus infection. Especially, Z14 and Z171 displayed strong neutralizing activities against Delta and Omicron variants. Molecular docking predicted that affibody molecule interaction sites with RBM overlapped with ACE2. Thus, the novel affibody molecules could be further developed as specific neutralization agents against SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2 and its variants are threatening the whole world. Although a full dose of vaccine injection showed great preventive effects and monoclonal antibody reagents have also been used for a specific treatment, the global pandemic persists. So, developing new vaccines and specific agents are needed urgently. In this work, we expressed the recombinant RBMFP protein as an antigen, identified its antigenicity, and used it as an antigen for affibody phage-display selection. After the prokaryotic expression, the specific affibody molecules were obtained and tested for pseudovirus neutralization. Results showed that the serum antibody induced by RBMFP neutralized Omicron variants. The screened affibody molecules specifically bound the RBMFP of SARS-CoV-2 with high affinity and neutralized the Delta and Omicron pseudovirus in vitro. So, the RBMFP induced serum provides neutralizing effects against pseudovirus in vitro, and the affibodies have the potential to be developed into specific prophylactic agents for SARS-CoV-2 and its variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Simulación del Acoplamiento Molecular , Pruebas de Neutralización/métodos , Proteínas Recombinantes , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
10.
Front Genet ; 13: 827560, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692839

RESUMEN

Spondyloepiphyseal dysplasia congenital (SEDC) is a rare chondrodysplasia caused by dominant pathogenic variants in COL2A1. Here, we detected a novel variant c.3392G > T (NM_001844.4) of COL2A1 in a Chinese family with SEDC by targeted next-generation sequencing. To confirm the pathogenicity of the variant, we generated an appropriate minigene construct based on HeLa and HEK293T cell lines. Splicing assay indicated that the mutated minigene led to aberrant splicing of COL2A1 pre-mRNA and produced an alternatively spliced transcript with a skipping of partial exon 48, which generated a predicted in-frame deletion of 15 amino acids (p. Gly1131_Pro1145del) in the COL2A1 protein. Due to the pathogenicity of the variation, we performed prenatal diagnosis on the proband's wife, which indicated that the fetus carried the same mutation.

11.
Front Microbiol ; 13: 1075033, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713153

RESUMEN

The fungi causing fruit rot were isolated from symptomatic Shengzhou nane (Prunus salicina var. taoxingli) fruit and were identified as Aspergillus niger by biological characteristics and molecular analysis of the internal transcribed spacer region (rDNA-ITS) and translation elongation factor-1α (TEF-1α) sequences. Optimal growth conditions for A. niger were 30°C, pH 5.0-6.0, and fructose and peptone as carbon and nitrogen sources. The effects of sodium bicarbonate (SBC), natamycin (NT), and combined treatments on A. niger inhibition were investigated. Treatment with 4.0 g/L sodium bicarbonate (SBC) + 5.0 mg/L natamycin (NT) inhibited mycelial growth and spore germination as completely as 12.0 mg/L SBC or 25.0 mg/L NT. SBC and NT treatments disrupted the structural integrity of cell and mitochondria membranes and decreased enzyme activities involved in the tricarboxylic acid (TCA) cycle, mitochondrial membrane potential (MMP), ATP production in mitochondria, and ergosterol content in the plasma membrane, thus leading to the inhibition of A. niger growth. Moreover, experimental results in vivo showed that the rot lesion diameter and decay rate of Shengzhou nane fruit treated with SBC and NT were significantly reduced compared with the control. The results suggest that the combination treatment of SBC and NT could be an alternative to synthetic fungicides for controlling postharvest Shengzhou nane decay caused by A. niger.

12.
Water Res ; 204: 117578, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34455158

RESUMEN

To verify whether cyanobacteria can travel from eutrophic lakes into the surrounding groundwater, a large-scale field investigation, laboratorial incubations, and quartz column penetration tests were carried out in Lake Taihu (China). High-throughput sequencing of 16S rRNA gene amplicons indicated that cyanobacteria operational taxonomic units (OTUs) were present at fifteen out of forty total wells in four cardinal directions at varying distances from the shore of Lake Taihu, up to a maximum of forty-three kilometers. Six cyanobacteria genera were detected including Microcystis, Dolichospermum, Phormidium, Leptolyngbya, Pseudanabaena and Synechococcus. The proportions of Phormidium, Microcystis and Synechococcus OTUs in the total cyanobacterial community were 45.2%, 32.2% and 19.4%, respectively. The qRT-PCR results showed that cyanobacterial abundance decreased with increasing distance from the shore of Lake Taihu. Based on the microscopic analysis of cultures inoculated with groundwater, we found Microcystis, Dolichospermum and Phormidium. Five cyanobacterial genera were able to penetrate columns filled with quartz particles ranging from 100∼200 µm. Finer layers of quartz sands were found to be impenetrable. The rating of infiltration capabilities was Microcystis > Synechococcus > Nostoc > Phormidium > Cylindrospermopsis. Deficient concentrations of microcystins were found (< 1 µg L-1) in the groundwater samples. Based on the consideration of different factors (cyanobacterial composition in Lake Taihu, peripheral groundwater, and algal soil crusts), it was deduced that Microcystis likely originated from the lake. Still, Phormidium was probably originated from the soil infiltration. These results suggest that cyanobacteria and their toxins could travel in the groundwater, but this is a size-dependent mechanism.


Asunto(s)
Cianobacterias , Agua Subterránea , Microcystis , China , Cianobacterias/genética , Lagos , Microcystis/genética , ARN Ribosómico 16S/genética
13.
Front Oncol ; 11: 684867, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327136

RESUMEN

OBJECTIVE: This study aims to assess the efficacy and safety of penpulimab (a humanized anti-PD-1 IgG1 antibody) with anlotinib in the first-line treatment of Chinese patients with uHCC. METHODS: In this open-label multicenter phase Ib/II trial, patients with histologically or cytologically confirmed uHCC, without previous systemic treatment, aged 18-75 years old, classified as BCLC stage B (not amenable for locoregional therapy) or C, with Child-Pugh score ≤7 and ECOG performance status ≤1 were enrolled. Patients received penpulimab [200 mg intravenous (i.v.) Q3W] and oral anlotinib (8 mg/day, 2 weeks on/1 week off). The primary endpoint was objective response rate (ORR). Secondary endpoints included safety, disease control rate (DCR), progression-free survival (PFS), time to progression (TTP), duration of response (DoR), and overall survival (OS). This trial is registered with ClinicalTrials.gov (NCT04172571). RESULTS: At the data cutoff (December 30, 2020), 31 eligible patients had been enrolled and treated with a median follow-up of 14.7 months (range, 1.4-22.1). The ORR was 31.0% (95% CI, 15.3-50.8%), and the DCR was 82.8% (95% CI, 64.2-94.2%). The median PFS and TTP for 31 patients were 8.8 months (95% CI, 4.0-12.3) and 8.8 months (95% CI, 4.0-12.9) respectively. The median OS was not reached; the 12-month OS rate was 69.0% (95% CI, 48.9-82.5%). Only 19.4% (6/31) of patients had grade 3/4 treatment-related adverse events (TRAEs). CONCLUSION: Penpulimab plus anlotinib showed promising anti-tumor activity and a favorable safety profile as first-line treatment of patients with uHCC.

14.
Front Oncol ; 11: 614925, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959494

RESUMEN

Human cytomegalovirus (HCMV) is an oncogenic virus associated with tumorigenesis. Our previous study revealed that the HCMV US31 gene interacted with NF-κB2 and mediated inflammation through macrophages. However, there are few reports on the role of US31 in gastric cancer (GC). The aim of this study was to investigate the expression of the US31 gene in GC tissue and assess its role in the occurrence and development of GC. US31 expression in 573 cancer tissues was analyzed using immunohistochemistry. Results showed that US31 was significantly associated with tumor size (P = 0.005) and distant metastasis (P < 0.001). Higher US31 expression indicated better overall survival in GC patients. Overexpression of US31 significantly inhibited the proliferation, migration, and invasion of GC cells in vitro (P < 0.05). Furthermore, expression levels of CD4, CD66b, and CD166 were positively correlated with US31, suggesting that it was involved in regulating the tumor immune microenvironment of GC. RNA sequencing, along with quantitative real-time polymerase chain reaction, confirmed that the expression of US31 promoted immune activation and secretion of inflammatory cytokines. Overall, US31 inhibited the malignant phenotype and regulated tumor immune cell infiltration in GC; these results suggest that US31 could be a potential prognostic factor for GC and may open the door for a new immunotherapy strategy.

15.
Front Pharmacol ; 12: 617714, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692690

RESUMEN

Dimethyl fumarate (DMF) is an approved drug used in the treatment of multiple sclerosis (MS) and psoriasis therapy. Multiple studies have demonstrated other pharmacological activities of DMF such as an anti-cancer agent. In particular, studies have shown that DMF can modulate the NRF2/HO1/NQO1 antioxidant signal pathway and inactivate NF-κB to suppress the growth of colon and breast cancer cells, and induce cell death. In this study, we aimed to evaluate the anti-tumor activities of DMF in pancreatic cancer (PC) focusing on cell death as the predominant mechanism of response. We showed that both mitochondrial respiration and aerobic glycolysis were severely depressed following treatment with DMF and the effects could be abrogated by treatment with L-cysteine and N-acetyl-L-cysteine (NAC). Importantly, we verified that DMF induced metabolic crisis and that cell death was not related to alterations in ROS. Our data implied that MTHFD1 could be a potential downstream target of DMF identified by molecular docking analysis. Finally, we confirmed that MTHFD1 is up-regulated in PC and overexpression of MTHFD1 was negatively related to outcomes of PC patients. Our data indicate that DMF induces metabolic crisie to suppress cell growth and could be a potential novel therapy in the treatment of PC.

16.
Phytother Res ; 35(5): 2624-2638, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33438793

RESUMEN

We aim to evaluate the tumor metabolic suppressive activity of Oridonin (extract of Rabdosia rubescens) in glioma and elucidate its potential mechanism. Effects of Oridonin on U251/U87 cells were determined by CCK8, RTCA, colony formation, flow cytometry, wound healing, and Transwell assay. Xenograft tumor model to evaluate the effect of Oridonin on glioma cells in vivo. Cellular bioenergetics were measured by Seahorse. RNA-seq was performed to screen potential biological pathways in Oridonin treated cells. Bioinformatics analysis of PCK2 in glioma was performed based on TCGA/CGGA. Endogenous PCK2 was knocked-down by lentivirus packaged shRNA. We found Oridonin significantly inhibited cell growth in U251/U87 in vitro and in vivo. Both oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were decreased in Oridonin-treated U251/U87 cells. Oridonin treatment led to PCK2 down-regulation. Additionally, PCK2 was up-regulated in higher grade glioma and correlated with poor outcomes. Furthermore, PCK2 depletion significantly inhibited cell growth and decreased OCR/ECAR in U251/U87 which coincided with the effects of Oridonin. Therefore, we evaluated the potent anti-tumor property of Oridonin in glioma. Importantly, we demonstrated that PCK2 might be a novel target of Oridonin on glioma by inducing energy crisis and increasing oxidative stress.

17.
RSC Adv ; 11(40): 24822-24835, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35481003

RESUMEN

A novel composite consisting of NiO/NiC/g-C3N4 with excellent photocatalytic properties was successfully synthesized by the simple calcination of layered double metal hydroxide (LDH) and melamine. The color and chemical composition of the as-prepared composites could be tailored by changing the mass ratio of NiAl-LDH and g-C3N4. For the L4C composite at the ratio of 1 : 1, it showed the desired dark color due to the generated NiC. It also showed high photodegradation efficiency under visible light irradiation, reaching 97.5% toward Rhodamine B and 92.6% toward tetracycline. The high photodegradation efficiency could be mainly attributed to the unique formation of NiC cocatalysts coupled with g-C3N4 and NiO semiconductors, which constructed a Z-scheme system and facilitated the efficient separation of the photogenerated electron-hole pairs. The present findings provide a promising approach for fabricating the new types of composite photocatalysts for pollutant degradation.

18.
Artículo en Inglés | MEDLINE | ID: mdl-32382276

RESUMEN

Acupuncture has been practiced to treat neuropsychiatric disorders for a thousand years in China. Prevention of disease by acupuncture and moxibustion treatment, guided by the theory of Chinese acupuncture, gradually draws growing attention nowadays and has been investigated in the role of the prevention and treatment of mental disorders such as AD. Despite its well-documented efficacy, its biological action remains greatly invalidated. Here, we sought to observe whether preventive electroacupuncture during the aging process could alleviate learning and memory deficits in D-galactose-induced aged rats. We found that preventive electroacupuncture at GV20-BL23 acupoints during aging attenuated the hippocampal loss of dendritic spines, ameliorated neuronal microtubule injuries, and increased the expressions of postsynaptic PSD95 and presynaptic SYN, two important synapse-associated proteins involved in synaptic plasticity. Furthermore, we observed an inhibition of GSK3ß/mTOR pathway activity accompanied by a decrease in tau phosphorylation level and prompted autophagy activity induced by preventive electroacupuncture. Our results suggested that preventive electroacupuncture can prevent and alleviate memory deficits and ameliorate synapse and neuronal microtubule damage in aging rats, which was probably via the inhibition of GSK3ß/mTOR signaling pathway. It may provide new insights for the identification of prevention strategies of AD.

19.
Artículo en Inglés | MEDLINE | ID: mdl-32328467

RESUMEN

Objective: Pathogen infection plays a role in the development and progression of systemic lupus erythematosus (SLE). Previous studies showed that peripheral blood mononuclear cells (PBMCs) harbor many viral communities. However, little is known about the viral components and the expression profiles of SLE-associated virome. We aimed to identify viral taxonomic markers of SLE that might be used in the detection of disease or in predicting its outcome. Methods: Non-human sequence data from high-throughput transcriptome sequencing of PBMC samples from 10 SLE patients and 10 healthy individuals were used for taxonomic alignment against an integrated virome reference genome database. Based on abundance profiles of SLE-associated virome species, genera, or host, Random Forests model was used to identify the viruses associated with SLE diagnostic markers. Spearman's correlation and functional clustering was used to analyze the interaction of candidate virome dysbiosis and SLE-associated differentially expressed genes. Results: A total of 419 viruses (38 human associated viruses, 350 phage, and 31 other viruses) was detected and the diversity of the PBMC virome was significantly increased in patients with SLE compared to the healthy controls (HCs). Viral taxa discriminated the cases from the controls, with an area under the receiver operating characteristic curve of 0.883, 0.695, and 0.540 for species, genus, and host, respectively. Clinical subgroup analysis showed that candidate PBMC viral markers were associated with stable- and active-stage SLE. Functional analyses showed that virome dysbiosis was mainly relevant to cellular and metabolic processes. Conclusion: We identified virome signatures associated with SLE, which might help develop tools to identify SLE patients or predict the disease stage.


Asunto(s)
Disbiosis , Lupus Eritematoso Sistémico , Biomarcadores , Humanos , Leucocitos Mononucleares , Lupus Eritematoso Sistémico/complicaciones , Viroma
20.
Exp Biol Med (Maywood) ; 245(8): 703-710, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32223331

RESUMEN

IMPACT STATEMENT: Non-invasive fibrosis indices, according to regular laboratory and clinical data, could be useful in assessing liver fibrosis in chronic hepatitis patients. However, the role of these biomarkers remains unclear in predicting the outcome of HBV-associated HCC in patients. This study was carried out retrospectively and included a relatively large sample size (n = 405) with a heterogeneous population of HBV infected patients and longer duration of prospective follow-up. Our study suggested that APRI and Fibro-α Scores are inversely correlated with overall survival in HBV-associated HCC patients. Meanwhile, GUCI, King Score, and APRI were highly correlated with cirrhosis status. Also, in subgroups of cirrhosis or non-cirrhosis, Fibro-α Scores could differentiate patients with good prognosis from those with poor outcome. This result would aid clinicians in acquiring preventive and therapeutic methods in patients with high risk.


Asunto(s)
Carcinoma Hepatocelular/patología , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Adulto , Anciano , Alanina Transaminasa/sangre , Aspartato Aminotransferasas/sangre , Biomarcadores/sangre , Carcinoma Hepatocelular/virología , Femenino , Virus de la Hepatitis B/patogenicidad , Humanos , Cirrosis Hepática/sangre , Neoplasias Hepáticas/virología , Masculino , Persona de Mediana Edad , Recuento de Plaquetas , Índice de Severidad de la Enfermedad , alfa-Fetoproteínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...