Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(20): 26817-26823, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38727564

RESUMEN

Emulating biological sodium ion channels to achieve high selectivity and rapid Na+ transport is important for water desalination, energy conversion, and separation processes. However, the development of artificial ion channels, especially multichannels, to achieve high ion selectivity, remains a challenge. In this work, we demonstrate the fabrication of ion channel membranes utilizing crown-ether crystals (DA18C6-nitrate crystals), which feature extremely consistent subnanometer pores. The polyethylene terephthalate (PET) membranes were initially subjected to amination, followed by the in situ growth of DA18C6-nitrate crystals to establish ordered multichannels aimed at facilitating selective Na+ conductance. These channels allow rapid Na+ transport while inhibiting the migration of other ions (K+ and Ca2+). The Na+ transport rate was 2.15 mol m-2 h-1, resulting in the Na+/K+ and Na+/Ca2+ selectivity ratios of 6.53 and 12.56, respectively. Due to the immobilization of the crown-ether ring, when the size of the transmembrane ion exceeded that of the crown-ether ring's cavity, the ions had to undergo a dehydration process to pass through the channel. This resulted in the ions encountering a higher energy barrier upon entering the channel, making it more difficult for them to permeate. However, the size of Na+ was compatible with the cavity of the crown-ether ring and was able to displace the hydrated layer effectively, facilitating selective Na+ translocation. In summary, this research offers a promising approach for the future development of functionalized ion channels and efficient membrane materials tailored for high-performance Na+ separation.

2.
Anal Chem ; 96(6): 2651-2657, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38306178

RESUMEN

In vivo sensing of the dynamics of ions with high selectivity is essential for gaining molecular insights into numerous physiological and pathological processes. In this work, we report an ion-selective micropipette sensor (ISMS) through the integration of functional crown ether-encapsulated metal-organic frameworks (MOFs) synthesized in situ within the micropipette tip. The ISMS features distinctive sodium ion (Na+) conduction and high selectivity toward Na+ sensing. The selectivity is attributed to the synergistic effects of subnanoconfined space and the specific coordination of 18-crown-6 toward potassium ions (K+), which largely increase the steric hindrance and transport resistance for K+ to pass through the ISMS. Furthermore, the ISMS exhibits high stability and sensitivity, facilitating real-time monitoring of Na+ dynamics in the living rat brain during spreading of the depression events process. In light of the diversity of crown ethers and MOFs, we believe this study paves the way for a nanofluidic platform for in vivo sensing and neuromorphic electrochemical sensing.


Asunto(s)
Éteres Corona , Estructuras Metalorgánicas , Éteres Corona/química , Sodio/química , Iones/química , Potasio/química
3.
Angew Chem Int Ed Engl ; 63(7): e202316161, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38165062

RESUMEN

Biological ion channels use the synergistic effects of various strategies to realize highly selective ion sieving. For example, potassium channels use functional groups and angstrom-sized pores to discriminate rival ions and enrich target ions. Inspired by this, we constructed a layered crystal pillared by crown ether that incorporates these strategies to realize high Li+ selectivity. The pillared channels and crown ether have an angstrom-scale size. The crown ether specifically allows the low-barrier transport of Li+ . The channels attract and enrich Li+ ions by up to orders of magnitude. As a result, our material sieves Li+ out of various common ions such as Na+ , K+ , Ca2+ , Mg2+ and Al3+ . Moreover, by spontaneously enriching Li+ ions, it realizes an effective Li+ /Na+ selectivity of 1422 in artificial seawater where the Li+ concentration is merely 25 µM. We expect this work to spark technologies for the extraction of lithium and other dilute metal ions.

4.
Nat Commun ; 12(1): 5231, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471132

RESUMEN

Biological sodium channels ferry sodium ions across the lipid membrane while rejecting potassium ions and other metal ions. Realizing such ion selectivity in an artificial solid-state ionic device will enable new separation technologies but remains highly challenging. In this work, we report an artificial sodium-selective ionic device, built on synthesized porous crown-ether crystals which consist of densely packed 0.26-nm-wide pores. The Na+ selectivity of the artificial sodium-selective ionic device reached 15 against K + , which is comparable to the biological counterpart, 523 against Ca2 + , which is nearly two orders of magnitude higher than the biological one, and 1128 against Mg2 + . The selectivity may arise from the size effect and molecular recognition effect. This work may contribute to the understanding of the structure-performance relationship of ion selective nanopores.

5.
Chem Commun (Camb) ; 57(58): 7152-7155, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34184013

RESUMEN

Glass micropipettes are easy to fabricate, have excellent flexibility and stable properties. HKUST-1 and MIL-68(In) are in situ grown in the tip of a micropipette to construct porous nanochannels. After absorbing H2S, the MIL-68(In)-based nanochannel shows effective metal ion responsiveness for Hg2+-detection.


Asunto(s)
Sulfuro de Hidrógeno/análisis , Estructuras Metalorgánicas/química , Adsorción , Vidrio/química , Sulfuro de Hidrógeno/aislamiento & purificación , Nanoestructuras/química , Porosidad
6.
Chem Commun (Camb) ; 56(74): 10855-10858, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32895684

RESUMEN

Zeolitic imidazolate framework-8 (ZIF-8)-modified micropipets can be an effective sensing platform for zinc finger peptides, the limit of detection of which reaches 10-2 µg ml-1. A series of techniques for detecting biomolecules are expected to emerge because of its simplicity, low cost, and universality by modifying other functional materials into the micropipets.


Asunto(s)
Péptidos/química , Zeolitas/química , Estructura Molecular , Nanopartículas/química , Tamaño de la Partícula , Propiedades de Superficie , Zinc/química , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...