Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Cell ; 14(9): 668-682, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36930526

RESUMEN

Although the development of COVID-19 vaccines has been a remarkable success, the heterogeneous individual antibody generation and decline over time are unknown and still hard to predict. In this study, blood samples were collected from 163 participants who next received two doses of an inactivated COVID-19 vaccine (CoronaVac®) at a 28-day interval. Using TMT-based proteomics, we identified 1,715 serum and 7,342 peripheral blood mononuclear cells (PBMCs) proteins. We proposed two sets of potential biomarkers (seven from serum, five from PBMCs) at baseline using machine learning, and predicted the individual seropositivity 57 days after vaccination (AUC = 0.87). Based on the four PBMC's potential biomarkers, we predicted the antibody persistence until 180 days after vaccination (AUC = 0.79). Our data highlighted characteristic hematological host responses, including altered lymphocyte migration regulation, neutrophil degranulation, and humoral immune response. This study proposed potential blood-derived protein biomarkers before vaccination for predicting heterogeneous antibody generation and decline after COVID-19 vaccination, shedding light on immunization mechanisms and individual booster shot planning.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Leucocitos Mononucleares , Proteómica , COVID-19/prevención & control , Vacunación , Anticuerpos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
2.
Mol Ecol Resour ; 22(5): 1919-1938, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35032338

RESUMEN

Chinese plum (Prunus salicina Lindl.) is a stone fruit that belongs to the Prunus genus and plays an important role in the global production of plum. In this study, we report the genome sequence of the Chinese plum "Sanyueli", which is known to have a low-chill requirement for flower bud break. The assembled genome size was 282.38 Mb, with a contig N50 of 1.37 Mb. Over 99% of the assembly was anchored to eight pseudochromosomes, with a scaffold N50 of 34.46 Mb. A total of 29,708 protein-coding genes were predicted from the genome and 46.85% (132.32 Mb) of the genome was annotated as repetitive sequence. Bud dormancy is influenced by chilling requirement in plum and partly controlled by DORMANCY ASSOCIATED MADS-box (DAM) genes. Six tandemly arrayed PsDAM genes were identified in the assembled genome. Sequence analysis of PsDAM6 in "Sanyueli" revealed the presence of large insertions in the intron and exon regions. Transcriptome analysis indicated that the expression of PsDAM6 in the dormant flower buds of "Sanyueli" was significantly lower than that in the dormant flower buds of the high chill requiring "Furongli" plum. In addition, PsDAM6 expression was repressed by chilling treatment. The genome sequence of "Sanyueli" plum provides a valuable resource for elucidating the molecular mechanisms responsible for the regulation of chilling requirements, and it is also useful for the identification of the genes involved in the control of other important agronomic traits and molecular breeding in plum.


Asunto(s)
Prunus domestica , China , Flores/genética , Frutas/genética , Perfilación de la Expresión Génica , Prunus domestica/genética
3.
Front Plant Sci ; 12: 680469, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239526

RESUMEN

Plum is one of the most important stone fruits in the world and anthocyanin-rich plums are increasingly popular due to their health-promoting potential. In this study, we investigated the mechanisms of anthocyanin accumulation in the flesh of the red-fleshed mutant of the yellow-fleshed plum 'Sanyueli'. RNA-Seq and qRT-PCR showed that anthocyanin biosynthetic genes and the transcription factor PsMYB10.2 were upregulated in the flesh of the mutant. Functional testing in tobacco leaves indicated that PsMYB10.2 was an anthocyanin pathway activator and can activate the promoter of the anthocyanin biosynthetic genes PsUFGT and PsGST. The role of PsMYB10.2 in anthocyanin accumulation in the flesh of plum was further confirmed by virus-induced gene silencing. These results provide information for further elucidating the underlying mechanisms of anthocyanin accumulation in the flesh of plum and for the breeding of new red-fleshed plum cultivars.

4.
J Sci Food Agric ; 99(3): 1010-1019, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30009532

RESUMEN

BACKGROUND: Organic acids, sugars and pigments are key components that determine the taste and flavor of plum fruit. However, metabolism of organic acid and sugar is not fully understood during the development of plum fruit cv. 'Furongli'. RESULTS: Mature fruit of 'Furongli' has the highest content of anthocyanins and the lowest content of total phenol compounds and flavonoids. Malate is the predominant organic acid anion in 'Furongli' fruit, followed by citrate and isocitrate. Glucose was the predominant sugar form, followed by fructose and sucrose. Correlation analysis indicated that malate content increased with increasing phosphoenolpyruvate carboxylase (PEPC) activity and decreasing nicotinamide adenine dinucleotide-malate dehydrogenase (NAD-MDH) activity. Citrate and isocitrate content increased with increasing PEPC and aconitase (ACO) activities, respectively. Both acid invertase and neutral invertase had higher activities at the early stage than later stage of fruit development. Fructose content decreased with increasing phosphoglucoisomerase (PGI) activity, whereas glucose content increased with decreasing hexokinase (HK) activity. CONCLUSION: Dynamics in organic acid anions were not solely controlled by a single enzyme but regulated by the integrated activity of enzymes such as nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME), NAD-ME, PEPC, ACO and NADP-isocitrate dehydrogenase. Sugar metabolism enzymes such as PGI, invertase and HK may play vital roles in the regulation of individual sugar metabolic processes. © 2018 Society of Chemical Industry.


Asunto(s)
Frutas/metabolismo , Prunus domestica/metabolismo , Ácidos Acíclicos/metabolismo , Metabolismo de los Hidratos de Carbono , Frutas/enzimología , Frutas/crecimiento & desarrollo , Pigmentos Biológicos/análisis , Prunus domestica/enzimología , Prunus domestica/crecimiento & desarrollo
5.
Plant J ; 98(2): 260-276, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30570805

RESUMEN

Alternative polyadenylation (APA) is a widespread post-transcriptional mechanism that regulates gene expression through mRNA metabolism, playing a pivotal role in modulating phenotypic traits in rice (Oryza sativa L.). However, little is known about the APA-mediated regulation underlying the distinct characteristics between two major rice subspecies, indica and japonica. Using a poly(A)-tag sequencing approach, polyadenylation (poly(A)) site profiles were investigated and compared pairwise from germination to the mature stage between indica and japonica, and extensive differentiation in APA profiles was detected genome-wide. Genes with subspecies-specific poly(A) sites were found to contribute to subspecies characteristics, particularly in disease resistance of indica and cold-stress tolerance of japonica. In most tissues, differential usage of APA sites exhibited an apparent impact on the gene expression profiles between subspecies, and genes with those APA sites were significantly enriched in quantitative trait loci (QTL) related to yield traits, such as spikelet number and 1000-seed weight. In leaves of the booting stage, APA site-switching genes displayed global shortening of 3' untranslated regions with increased expression in indica compared with japonica, and they were overrepresented in the porphyrin and chlorophyll metabolism pathways. This phenomenon may lead to a higher chlorophyll content and photosynthesis in indica than in japonica, being associated with their differential growth rates and yield potentials. We further constructed an online resource for querying and visualizing the poly(A) atlas in these two rice subspecies. Our results suggest that APA may be largely involved in developmental differentiations between two rice subspecies, especially in leaf characteristics and the stress response, broadening our knowledge of the post-transcriptional genetic basis underlying the divergence of rice traits.


Asunto(s)
Genes de Plantas/genética , Oryza/genética , Oryza/metabolismo , Poliadenilación , Aclimatación , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Fenotipo , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Sitios de Carácter Cuantitativo , Semillas , Estrés Fisiológico , Transcriptoma
6.
Gene ; 676: 202-213, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30030201

RESUMEN

Jaboticaba is a grape-like fruit that accumulates high levels of anthocyanins in the peel and is proposed as a good source of functional pigments. However, the molecular mechanisms underlying anthocyanin accumulation in jaboticaba peel remains to be elucidated. In this study, we employed RNA-seq technique to compare the transcriptomic differences between green-colored and black-colored jaboticaba peels. Over 5 million high-quality reads were assembled into 62,190 unigenes with an average length of 737 bp, 29,320 (47.15%) of them were annotated by public databases. 2152 unigenes were found to be differentially expressed (830 upregulated and 1322 downregulated). Gene ontology analysis and pathway enrichment annotation revealed that 18 differentially expressed genes encode phenylalanine ammonialyase, 4-coumaroyl:CoA-ligase, chalcone synthase, flavanone 3-hydroxylase, flavonoid 3'-hydroxylase, anthocyanidin synthase, UDP-glucose: flavonoid 3-O-glucosyltransferase, glutathione S-transferase, Cytochrome b5 were associated with anthocyanin biosynthesis. Additionally, 54 differentially expressed transcription factors were identified. Furthermore, the expression of genes involved in biosynthesis and signal transduction of ethylene and abscisic acid were negatively and positively correlated with that of anthocyanin pathway genes and anthocyanin accumulation, respectively. Quantitative reverse transcription PCR analysis of candidate genes showed trends similar to those in the RNA-seq analysis. McMYB, a homolog of AtMYB113, induced anthocyanin accumulation in tobacco leaves when co-infiltrated PsbHLH3. These results will contribute to further understanding of the molecular mechanisms regulating anthocyanin accumulation in jaboticaba peel.


Asunto(s)
Antocianinas/biosíntesis , Perfilación de la Expresión Génica/métodos , Myrtaceae/genética , Proteínas de Plantas/genética , Clonación Molecular , Regulación de la Expresión Génica , Anotación de Secuencia Molecular , Myrtaceae/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN/métodos
7.
Front Plant Sci ; 7: 1737, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27933072

RESUMEN

Common wild rice (Oryza rufipogon Griff.) represents an important resource for rice improvement. Genetic populations provide the basis for a wide range of genetic and genomic studies. In particular, chromosome segment substitution lines (CSSLs) are most powerful tools for the detection and precise mapping of quantitative trait loci (QTLs). In this study, 146 CSSLs were produced; they were derived from the crossing and back-crossing of two rice cultivars: Dongnanihui 810 (Oryza sativa L.), an indica rice cultivar as the recipient, and ZhangPu wild rice, a wild rice cultivar as the donor. First, a physical map of the 146 CSSLs was constructed using 149 molecular markers. Based on this map, the total size of the 147 substituted segments in the population was 1145.65 Mb, or 3.04 times that of the rice genome. To further facilitate gene mapping, heterozygous chromosome segment substitution lines (HCSSLs) were also produced, which were heterozygous in the target regions. Second, a physical map of the 244 HCSSLs was produced using 149 molecular markers. Based on this map, the total length of substituted segments in the HCSSLs was 1683.75 Mb, or 4.47 times the total length of the rice genome. Third, using the 146 CSSLs, two QTLs for plant height, and one major QTL for apiculus coloration were identified. Using the two populations of HCSSLs, the qPa-6-2 gene was precisely mapped to an 88 kb region. These CSSLs and HCSSLs may, therefore, provide powerful tools for future whole genome large-scale gene discovery in wild rice, providing a foundation enabling the development of new rice varieties. This research will also facilitate fine mapping and cloning of quantitative trait genes, providing for the development of superior rice varieties.

8.
Genome Res ; 26(12): 1753-1760, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27733415

RESUMEN

Alternative polyadenylation (APA), in which a transcript uses one of the poly(A) sites to define its 3'-end, is a common regulatory mechanism in eukaryotic gene expression. However, the potential of APA in determining crop agronomic traits remains elusive. This study systematically tallied poly(A) sites of 14 different rice tissues and developmental stages using the poly(A) tag sequencing (PAT-seq) approach. The results indicate significant involvement of APA in developmental and quantitative trait loci (QTL) gene expression. About 48% of all expressed genes use APA to generate transcriptomic and proteomic diversity. Some genes switch APA sites, allowing differentially expressed genes to use alternate 3' UTRs. Interestingly, APA in mature pollen is distinct where differential expression levels of a set of poly(A) factors and different distributions of APA sites are found, indicating a unique mRNA 3'-end formation regulation during gametophyte development. Equally interesting, statistical analyses showed that QTL tends to use APA for regulation of gene expression of many agronomic traits, suggesting a potential important role of APA in rice production. These results provide thus far the most comprehensive and high-resolution resource for advanced analysis of APA in crops and shed light on how APA is associated with trait formation in eukaryotes.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Oryza/crecimiento & desarrollo , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Poliadenilación , Sitios de Carácter Cuantitativo , Señales de Poliadenilación de ARN 3' , ARN Mensajero/química , ARN de Planta/genética
9.
Front Plant Sci ; 7: 1338, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27630660

RESUMEN

Anthocyanins are important pigments and are responsible for red coloration in plums. However, little is known about the molecular mechanisms underlying anthocyanin accumulation in plum fruits. In this study, the RNA-seq technique was used to analyze the transcriptomic changes during fruit ripening in the red-fleshed plum (Prunus salicina Lindl.) cultivar 'Furongli'. Over 161 million high-quality reads were assembled into 52,093 unigenes and 49.4% of these were annotated using public databases. Of these, 25,681 unigenes had significant hits to the sequences in the NCBI Nr database, 17,203 unigenes showed significant similarity to known proteins in the Swiss-Prot database and 5816 and 8585 unigenes had significant similarity to existing sequences in the Kyoto Encyclopedia of Genes and Genomes and the Cluster of Orthologous Groups databases, respectively. A total of 3548 unigenes were differentially expressed during fruit ripening and 119 of these were annotated as involved in "biosynthesis of other secondary metabolites." Biological pathway analysis and gene ontology term enrichment analysis revealed that 13 differentially expressed genes are involved in anthocyanin biosynthesis. Furthermore, transcription factors such as MYB and bHLH, which may control anthocyanin biosynthesis, were identified through coexpression analysis of transcription factors, and structural genes. Real-time qPCR analysis of candidate genes showed good correlation with the transcriptome data. These results contribute to our understanding of the molecular mechanisms underlying anthocyanin biosynthesis in plum flesh. The transcriptomic data generated in this study provide a basis for further studies of fruit ripening in plum.

10.
Methods Mol Biol ; 1255: 69-78, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25487205

RESUMEN

Messenger RNA in eukaryotic cells is initially produced as a nascent transcript (pre-mRNA) without a polyadenine [poly(A)] tail to the 3' end. The precise cleavage of the pre-mRNA and addition of a poly(A) track need the communication between cis-elements in the pre-mRNA sequences and transacting protein factors recognizing them. Based on homology analyses, Arabidopsis cleavage and polyadenylation specificity factor (AtCPSF) complex should play a critical role in pre-mRNA 3' end processing. Here we describe the isolation of AtCPSF complex by using a tandem affinity purification (TAP) method. We demonstrate that TAP is a potent protein complex isolating approach that can fulfill a downstream protein identification purpose based on mass spectrometry techniques.


Asunto(s)
Proteínas de Arabidopsis/aislamiento & purificación , Arabidopsis/química , Factor de Especificidad de Desdoblamiento y Poliadenilación/aislamiento & purificación , Proteínas de Arabidopsis/química , Cromatografía de Afinidad , Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Espectrometría de Masas , Poliadenilación
11.
Plant Physiol ; 166(2): 869-78, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25118256

RESUMEN

Alternative splicing is an essential biological process to generate proteome diversity and phenotypic complexity. Recent improvements in RNA sequencing accuracy and computational algorithms have provided unprecedented opportunities to examine the expression levels of Arabidopsis (Arabidopsis thaliana) transcripts. In this article, we analyzed 61 RNA sequencing samples from 10 totally independent studies of Arabidopsis and calculated the transcript expression levels in different tissues, treatments, developmental stages, and varieties. These data provide a comprehensive profile of Arabidopsis transcripts with single-base resolution. We quantified the expression levels of 40,745 transcripts annotated in The Arabidopsis Information Resource 10, comprising 73% common transcripts, 15% rare transcripts, and 12% nondetectable transcripts. In addition, we investigated diverse common transcripts in detail, including ubiquitous transcripts, dominant/subordinate transcripts, and switch transcripts, in terms of their expression and transcript ratio. Interestingly, alternative splicing was the highly enriched function for the genes related to dominant/subordinate transcripts and switch transcripts. In addition, motif analysis revealed that TC motifs were enriched in dominant transcripts but not in subordinate transcripts. These motifs were found to have a strong relationship with transcription factor activity. Our results shed light on the complexity of alternative splicing and the diversity of the contributing factors.


Asunto(s)
Arabidopsis/genética , ARN Mensajero/genética , ARN de Planta/genética , Empalme Alternativo , Genes de Plantas
12.
BMC Genomics ; 14: 598, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24004414

RESUMEN

BACKGROUND: The yeast and human Pcf11 functions in both constitutive and regulated transcription and pre-mRNA processing. The constitutive roles of PCF11 are largely mediated by its direct interaction with RNA Polymerase II C-terminal domain and a polyadenylation factor, Clp1. However, little is known about the mechanism of the regulatory roles of Pcf11. Though similar to Pcf11 in multiple aspects, Arabidopsis Pcf11-similar-4 protein (PCFS4) plays only a regulatory role in Arabidopsis gene expression. Towards understanding how PCFS4 regulates the expression of its direct target genes in a genome level, ChIP-Seq approach was employed in this study to identify PCFS4 enrichment sites (ES) and the ES-linked genes within the Arabidopsis genome. RESULTS: A total of 892 PCFS4 ES sites linked to 839 genes were identified. Distribution analysis of the ES sites along the gene bodies suggested that PCFS4 is preferentially located on the coding sequences of the genes, consistent with its regulatory role in transcription and pre-mRNA processing. Gene ontology (GO) analysis revealed that the ES-linked genes were specifically enriched in a few GO terms, including those categories of known PCFS4 functions in Arabidopsis development. More interestingly, GO analysis suggested novel roles of PCFS4. An example is its role in circadian rhythm, which was experimentally verified herein. ES site sequences analysis identified some over-represented sequence motifs shared by subsets of ES sites. The motifs may explain the specificity of PCFS4 on its target genes and the PCFS4's functions in multiple aspects of Arabidopsis development and behavior. CONCLUSIONS: Arabidopsis PCFS4 has been shown to specifically target on, and physically interact with, the subsets of genes. Its targeting specificity is likely mediated by cis-elements shared by the genes of each subset. The potential regulation on both transcription and mRNA processing levels of each subset of the genes may explain the functions of PCFS4 in multiple aspects of Arabidopsis development and behavior.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Inmunoprecipitación de Cromatina , Ritmo Circadiano/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Motivos de Nucleótidos , Plantas Modificadas Genéticamente/genética , Elementos Reguladores de la Transcripción
13.
Yi Chuan ; 34(8): 1064-72, 2012 Aug.
Artículo en Chino | MEDLINE | ID: mdl-22917912

RESUMEN

The yield and quality of rice are directly impacted by floral organ development in rice. Understanding of the floral development mechanism will be useful in genetic improvement of yield and quality. In this study, a rice mutant palea degradation 2 (pd2) in an indica cultivar '8PW33' was obtained after 60Co γ-ray treatment. Analysis of the mutant showed that, compared to the wild type, plant height, total grain number per panicle, and sword leaf width were significantly increased, but the seed setting rate were significantly decreased. The florets of the mutant exhibited degraded palea and sickle-shaped tortuous lemma. Detail examination using scanning electron microscopy revealed that when epidermis of the vane and lemma were normal, epidermis of the palea were arranged tightly, which might result from degraded palea. Genetic analysis supported that this mutation phenotype was controlled by a single recessive gene. Polymorphic analysis of simple sequence repeat markers demonstrated that PD2 gene is located on chromosome 9. With a larger mapping population and more indel markers, we further mapped PD2 gene between 2 indel markers with a physical region of about 82 kb. Within this region, there is a cloned gene REP1 known to control rice palea development. By comparing the DNA sequences of REP1 from pd2 and 8PW33, in combination with the results of phenotypic analysis, we concluded that PD2 is an allele of REP1.


Asunto(s)
Genes de Plantas , Mutación , Oryza/genética , Proteínas de Plantas/genética , Secuencia de Bases , Mapeo Cromosómico/métodos , Flores/genética , Flores/crecimiento & desarrollo , Datos de Secuencia Molecular , Oryza/crecimiento & desarrollo , Epidermis de la Planta/genética
14.
Gene ; 324: 35-45, 2004 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-14693369

RESUMEN

We have identified and genetically characterized an Arabidopsis thaliana gene encoding a homolog of the Cleavage and Polyadenylation Specificity Factor (CPSF). This gene, named AtCPSF73-II, has been found to have a critical role in development by loss-of-function analysis using a Dissociation (Ds) insertion line SGT1922. The homozygous SGT1922 plants were lethal, but the heterozygous plants, while retaining their normal vegetative growth, displayed empty seed spaces as well as aborted seeds with embryos arrested at the globular stage. Genetic analysis indicated that the disruption of the AtCPSF73-II gene in SGT1922 plants caused severe reduction in genetic transmission of female gametes due to a loss of fertility, while the transmission of male gametes was normal. Two independent heterozygous lines with T-DNA insertion on the AtCPSF73-II gene also showed the similar phenotype. Gene expression analysis demonstrated that AtCPSF73-II was preferentially expressed in flowers. Protein sequence analysis revealed a group of AtCPSF73-II homologs with unknown function in animals, but not in yeast, which suggested a potential important function of this group of genes in the development of multicellular organisms.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Semillas/genética , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Factor de Especificidad de Desdoblamiento y Poliadenilación , Clonación Molecular , ADN Bacteriano/genética , ADN Complementario/química , ADN Complementario/genética , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Letales/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Fenotipo , Filogenia , Semillas/crecimiento & desarrollo , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...