Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 452: 139604, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38749139

RESUMEN

This study aims to repurpose waste grain from the Baijiu brewing process into activated carbon for mitigating risk factors in alcoholic beverages, enhancing quality and ensuring safety. For attaining the most effective activated carbon, tailored carbon synthesis conditions were identified for diverse alcoholic beverages, optimising strategies. For beverages with low flavour compound content, optimal conditions include 900 °C calcination, 16-hour activation and a 1:2 activation ratio. In contrast, for those with abundant flavour compounds, 800 °C calcination, 16-hour activation and a 1:1 activation ratio are recommended. Post-synthesis analyses, employing nitrogen physisorption-desorption isotherms, FT-IR and SEM, validated a significant BET surface area of 244.871 m2/g for the KOH-activated carbon. Critical to adsorption efficiency, calcination temperature showcased noteworthy micro-porosity (0.8-1 nm), selectively adsorbing higher alcohols (C3-C6) and acetaldehyde while minimising acid and ester adsorption. Sensory evaluations refined optimal parameters, ensuring efficient spent grain management and heightened beverage safety without compromising aroma.

2.
J Agric Food Chem ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606987

RESUMEN

A primary challenge of polysaccharide analysis is the need for comprehensive extraction and characterization methods. In this study, mulberry polysaccharides at different maturities were fully extracted through a two-step process involving ethylenediaminetetraacetic acid (EDTA) and sodium hydroxide (NaOH), and their structures were determined by a combination analysis of monosaccharides and glycosidic linkages based on liquid chromatography triple quadrupole mass spectrometry (LC/QqQ-MS). The results indicate mulberry polysaccharides mainly contain highly branched pectic polysaccharides, (1,3,6)-linked glucan, xylan, and xyloglucan, but the content of different portions varies at different maturity stages. HG decreases from 19.12 and 19.14% (green mulberry) to 9.80 and 6.08% (red mulberry) but increases to 17.83 and 11.83% as mulberry transitioned from red to black. In contrast, the contents of glucan showed opposite trends. When mulberry turns red to black, the RG-I arabinan chains decrease from 47.75 and 28.86% to 13.16 and 12.72%, while the galactan side chains increase from 1.18 and 1.91 to 8.3 and 6.49%, xylan and xyloglucan show an increase in content. Overall, the two-step extraction combined with LC/QqQ-MS provides a new strategy for extensive analysis of complex plant polysaccharides.

3.
Carbohydr Polym ; 335: 122079, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616076

RESUMEN

The polysaccharides and triterpenes are important functional components of Ganoderma lucidum, but traditional preparation process of G. lucidum functional components can only realize the preparation of single functional component, which has poor targeting and low efficiency. In this study, the existence state of the functional components of G. lucidum was revealed. Then, the single step extraction process for functional components was established, and the precise structure evaluation of polysaccharide and triterpenes was conducted based on the process. The results showed that preparation time required for this strategy is only one-sixth of the traditional one, and 50 % of raw materials can be saved. Structural analysis of the functional components revealed that triterpenes were mainly Ganoderic acid and Lucidenic acid, and the polysaccharide structure was mainly 1,3-glucan and 1,3,6-glucan. The establishment of single step extraction strategy and the evaluation of the fine structure of functional components improved the efficiency of preparation and result determination, and provided an important basis for the development and utilization of green and low-carbon G. lucidum and even edible fungi resources and human nutritional dietary improvement strategies.


Asunto(s)
Reishi , Triterpenos , Humanos , Polisacáridos , Glucanos , China
4.
Compr Rev Food Sci Food Saf ; 23(2): e13327, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38517017

RESUMEN

Food sensory evaluation mainly includes explicit and implicit measurement methods. Implicit measures of consumer perception are gaining significant attention in food sensory and consumer science as they provide effective, subconscious, objective analysis. A wide range of advanced technologies are now available for analyzing physiological and psychological responses, including facial analysis technology, neuroimaging technology, autonomic nervous system technology, and behavioral pattern measurement. However, researchers in the food field often lack systematic knowledge of these multidisciplinary technologies and struggle with interpreting their results. In order to bridge this gap, this review systematically describes the principles and highlights the applications in food sensory and consumer science of facial analysis technologies such as eye tracking, facial electromyography, and automatic facial expression analysis, as well as neuroimaging technologies like electroencephalography, magnetoencephalography, functional magnetic resonance imaging, and functional near-infrared spectroscopy. Furthermore, we critically compare and discuss these advanced implicit techniques in the context of food sensory research and then accordingly propose prospects. Ultimately, we conclude that implicit measures should be complemented by traditional explicit measures to capture responses beyond preference. Facial analysis technologies offer a more objective reflection of sensory perception and attitudes toward food, whereas neuroimaging techniques provide valuable insight into the implicit physiological responses during food consumption. To enhance the interpretability and generalizability of implicit measurement results, further sensory studies are needed. Looking ahead, the combination of different methodological techniques in real-life situations holds promise for consumer sensory science in the field of food research.


Asunto(s)
Preferencias Alimentarias , Alimentos , Preferencias Alimentarias/fisiología , Preferencias Alimentarias/psicología , Comportamiento del Consumidor , Percepción
5.
Food Chem ; 444: 138655, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330612

RESUMEN

In this study, we addressed the limited water solubility of curcumin by utilizing epigallocatechin-3-gallate to form nanoparticles through self-assembly. The resulting particles, ranging from 100 to 150 nm, exhibited a redshift in the UV-visible spectrum, from 425 nm to 435 nm, indicative of potential π-π stacking. Molecular docking experiments supported this finding. Curcumin loaded with epigallocatechin-3-gallate showed exceptional dispersibility in aqueous solutions, with 90.92 % remaining after 60 days. The electrostatic screening effect arises from the charge carried by epigallocatechin-3-gallate on the nanoparticles, leading to enhanced retention of curcumin under different pH, temperature, and ionic strength conditions. Furthermore, epigallocatechin-3-gallate can interact with other hydrophobic polyphenols, improving their dispersibility and stability in aqueous systems. Applying this principle, a palatable beverage was formulated by combining turmeric extract and green tea. The nanoparticles encapsulated with epigallocatechin-3-gallate show potential for improving the applicability of curcumin in aqueous food systems.


Asunto(s)
Catequina , Catequina/análogos & derivados , Curcumina , Nanopartículas , Curcumina/química , Simulación del Acoplamiento Molecular , Bebidas , Catequina/química , Nanopartículas/química , Agua
6.
Foods ; 13(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38338617

RESUMEN

Sea buckthorn pomace (SBP) is a by-product of sea buckthorn processing that is rich in bioactive compounds. In this study, different active ingredients were extracted by using different solvents (water, methanol, ethanol, glycerol, ethyl acetate, and petroleum ether) combined with an ultrasonic assisted method. The correlation between the active ingredients and antioxidant properties of the extract was studied, which provided a research basis for the comprehensive utilization of SBP. This study revealed that the 75% ethanol extract had the highest total phenolic content (TPC) of 42.86 ± 0.73 mg GAE/g, while the 75% glycerol extract had the highest total flavonoid content (TFC) of 25.52 ± 1.35 mg RTE/g. The ethanol extract exhibited the strongest antioxidant activity at the same concentration compared with other solvents. The antioxidant activity of the ethanol, methanol, and glycerol extracts increased in a concentration-dependent manner. Thirteen phenolic compounds were detected in the SBP extracts using UPLC-MS/MS analysis. Notably, the 75% glycerol extract contained the highest concentration of all identified phenolic compounds, with rutin (192.21 ± 8.19 µg/g), epigallocatechin (105.49 ± 0.69 µg/g), and protocatechuic acid (27.9 ± 2.38 µg/g) being the most abundant. Flavonols were found to be the main phenolic substances in SBP. A strong correlation was observed between TPC and the antioxidant activities of SBP extracts. In conclusion, the choice of solvent significantly influences the active compounds and antioxidant activities of SBP extracts. SBP extracts are a valuable source of natural phenolics and antioxidants.

7.
J Food Sci ; 89(3): 1337-1346, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38258896

RESUMEN

To investigate the effect of hawthorn polyphenols on the physicochemical properties and digestibility of corn starch, different proportions (1%, 2%, 3%, and 4% [w/w]) of hawthorn polyphenol extracts (HPEs) were mixed with corn starch, and their physicochemical properties and digestive properties were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Rapid Visco Analysis, differential scanning calorimetry, and in vitro/in vivo analysis. Results indicated that small V-type crystal starch tended to be formed in the samples, and the addition of HPEs reduced the viscosity, prolonged the gelatinization temperature of corn starch, and increased the proportion of slowly digestible starch and resistant starch of the corn starch, which accounted for 36.32% ± 1.05% and 33.32% ± 4.07%, respectively. Compared with the raw corn starch, the postprandial blood glucose of mice that were administered the hawthorn polyphenols decreased significantly: the blood glucose peak (30 min) decreased from 14.30 ± 1.52 to 11.77 ± 1.21 mmol/L. Our study might provide some basic theoretical support for the application of hawthorn polyphenols in healthy starchy food processing.


Asunto(s)
Crataegus , Almidón , Animales , Ratones , Almidón/química , Zea mays , Polifenoles , Glucemia , Difracción de Rayos X , Viscosidad , Espectroscopía Infrarroja por Transformada de Fourier
8.
J Agric Food Chem ; 72(5): 2727-2740, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38289163

RESUMEN

The widespread bacterial contamination caused by foodborne pathogens has continuously driven the development of advanced and potent food antimicrobial agents. In this study, two novel antimicrobial peptides (AMPs) named KTA and KTR were obtained by modifying a natural AMP, Leg2, from chickpea storage protein legumin hydrolysates. They were further predicted to be stable hydrophobic cationic AMPs of α-helical structure with no hemolytic toxicity by several online servers. Moreover, the AMPs exerted superior antibacterial activity against two representative Staphylococcus aureus strains thanks to the increased hydrophobicity and positive charge, with minimum inhibition concentration value (4.74-7.41 µM) significantly lower than that of Leg2 (>1158.70 µM). Further, this study sought to elucidate the specific antimicrobial mechanism against Gram-positive bacteria. It was found that the electrostatic interactions of the AMPs with peptidoglycan were vital for peptide activity in combating Gram-positive bacteria. Subsequently, the cell membrane of S. aureus cells was irreversibly disrupted by increasing permeability and impairing membrane components, which led to the massive release of intracellular substances and eventual cell death. Overall, this work demonstrated that KTA and KTR were active against Gram-positive bacteria via peptidoglycan targeting and membrane-disruptive mechanisms and paved the way for expanding their application potential to alleviate food contamination.


Asunto(s)
Cicer , Staphylococcus aureus , Péptidos Antimicrobianos , Peptidoglicano/metabolismo , Membrana Celular/metabolismo , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
9.
Int J Biol Macromol ; 255: 128217, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992932

RESUMEN

The significant threat of foodborne pathogens contamination has continuously promoted the development of efficient antimicrobial food packaging materials. Here, an antimicrobial film was prepared with gallic acid-grafted-chitosan (CS/GA) that obtained by a two-step ultrasound method. The resultant films exhibited good transparency, improved UV barrier performance, and enhanced mechanical strength. Specifically, with the grafting of 1.2 % GA, the UV blocking ability of CS/GA film at 400 nm was significantly increased by 19.7 % and the tensile strength was nearly two times higher than that of CS film. Moreover, the CS/GA films exhibited an inspiring photoactivated bactericidal ability under 400 nm UVA light irradiation that eradicated almost 99.9 % of Staphylococcus aureus (S. aureus) cells within 60 min. To gain more insights into the antibacterial mechanism, the treated S. aureus cells were further investigated by visualizing bacterial ultrastructure and analyzing membrane properties. The results pointed to the peptidoglycan layer as the primary action target when bacteria come into contact with CS/GA films. Afterward, the intracellular oxidative lesions, disrupted bacterial integrity, and disordered membrane functional properties collectively resulted in eventual cell death. The findings revealed the unique peptidoglycan targeting and membrane disruptive mechanisms of CS/GA films, confirming the application values in controlling foodborne pathogens.


Asunto(s)
Antiinfecciosos , Quitosano , Staphylococcus aureus , Quitosano/farmacología , Quitosano/química , Ácido Gálico/farmacología , Ácido Gálico/química , Rayos Ultravioleta , Peptidoglicano , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/química , Embalaje de Alimentos/métodos
10.
Int J Biol Macromol ; 258(Pt 2): 128777, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096935

RESUMEN

Microcapsules were always used as functional material carriers for targeted delivery and meanwhile offering protection. However, microcapsule wall materials with specific properties were required, which makes the choice of wall material a key factor. In our previous study, a highly branched rhamnogalacturonan I rich (RG-I-rich) pectin was extracted from citrus canning processing water, which showed good gelling properties and binding ability, indicating it could be a potential microcapsule wall material. In the present study, Lactiplantibacillus plantarum GDMCC 1.140 and Lactobacillus rhamnosus were encapsulated by RG-I-rich pectin with embedding efficiencies of about 65 %. The environmental tolerance effect was evaluated under four different environmental stresses. Positive protection results were obtained under all four conditions, especially under H2O2 stress, the survival rate of probiotics embedded in microcapsules was about double that of free probiotics. The storage test showed that the total plate count of L. rhamnosus encapsulated in RG-I-rich pectin microcapsules could still reach 6.38 Log (CFU/mL) at 25 °C for 45 days. Moreover, probiotics embedded in microcapsules with additional incubation to form a biofilm layer inside could further improve the probiotics' activities significantly in the above experiments. In conclusion, RG-I-rich pectin may be a good microcapsule wall material for probiotics protection.


Asunto(s)
Peróxido de Hidrógeno , Probióticos , Cápsulas/química , Pectinas/química , Probióticos/química
11.
Foods ; 12(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38002152

RESUMEN

The effects of pectin from Citrus unshiu Marc. on glycolipid metabolism, the morphologies of the pancreas and epididymal fat, the gut microbiota, and the metabolites of short-chain fatty acids (SCFAs) in db/db mice were investigated in this study. The results indicated that pectin reduced the levels of fasting blood glucose, glycated serum protein, triglycerides, total cholesterol, and low-density lipoprotein cholesterol while increasing the levels of high-density lipoprotein cholesterol. Meanwhile, pectin could improve the morphology of islet cells and inhibit the hypertrophy of adipocytes. Additionally, pectin not only regulated the intestinal flora dysbiosis in db/db mice, as shown by the increasing proportion of Firmicutes/Bacteroidetes and the relative abundance of Ligilactobacillus, Lactobacillus, and Limosilactobacillus, but also remedied the metabolic disorder of SCFAs in db/db mice. These results suggest that pectin could promote glucose and lipid metabolism by regulating the intestinal flora with changes in SCFA profile. This study proves that pectin might serve as a new prebiotic agent to prevent the disorder of glycolipid metabolism.

12.
Int J Biol Macromol ; 253(Pt 7): 127474, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37858640

RESUMEN

The effects of ferulic acid (FA), protocatechuic acid (PA), and gallic acid (GA) on the physicochemical characteristics, structural properties, and in vitro digestion of gelatinized potato starch (PS) were investigated. Rapid viscosity analysis revealed that the gelatinized viscosity parameters of PS decreased after complexing with different phenolic acids. Dynamic rheology results showed that phenolic acids could reduce the values of G' and G″ of PS-phenolic acid complexes, demonstrating that the addition of phenolic acids weakened the viscoelasticity of starch gel. Fourier-transform infrared spectra and X-ray diffraction results elucidated that phenolic acids primarily reduced the degree of short-range ordered structure of starch through non-covalent interactions. The decrease in thermal stability and the more porous microstructure of the complexes confirmed that phenolic acids could interfere with the gel structure of the starch. The addition of different phenolic acids decreased the rapidly digestible starch (RDS) content and increased the resistant starch (RS) content, with GA exhibiting the best inhibitory capacity on starch in vitro digestibility, which might be associated with the number of hydroxy groups in phenolic acids. These results revealed that phenolic acids could affect the physicochemical characteristics of PS and regulate its digestion and might be a potential choice for producing slow digestibility starch foods.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/química , Almidón/química , Difracción de Rayos X , Viscosidad , Ácido Gálico , Digestión
13.
Foods ; 12(17)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37685247

RESUMEN

Polyphenols, as common components with various functional activities in plants, have become a research hotspot. However, researchers have found that the bioavailability and bioactivity of plant polyphenols is generally low because they are usually in the form of tannins, anthocyanins and glycosides. Polyphenol-rich fermented foods (PFFs) are reported to have better bioavailability and bioactivity than polyphenol-rich foods, because polyphenols are used as substrates during food fermentation and are hydrolyzed into smaller phenolic compounds (such as quercetin, kaempferol, gallic acid, ellagic acid, etc.) with higher bioactivity and bioavailability by polyphenol-associated enzymes (PAEs, e.g., tannases, esterases, phenolic acid decarboxylases and glycosidases). Biotransformation pathways of different polyphenols by PAEs secreted by different microorganisms are different. Meanwhile, polyphenols could also promote the growth of beneficial bacteria during the fermentation process while inhibiting the growth of pathogenic bacteria. Therefore, during the fermentation of PFFs, there must be an interactive relationship between polyphenols and microorganisms. The present study is an integration and analysis of the interaction mechanism between PFFs and microorganisms and is systematically elaborated. The present study will provide some new insights to explore the bioavailability and bioactivity of polyphenol-rich foods and greater exploitation of the availability of functional components (such as polyphenols) in plant-derived foods.

14.
J Agric Food Chem ; 71(38): 14013-14026, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37681676

RESUMEN

This study was to investigate the effects of different nonthermal treatments on quality attributes, anthocyanin profiles, and gene expressions related to anthocyanin biosynthesis during low-temperature storage, including pulsed light (PL), magnetic energy (ME), and ultrasound (US). Among these treatments, 1 min US treatment was the most effective method for improving fruit quality and increasing total anthocyanin contents (by 29.89 ± 3.32%) as well as individual anthocyanins during low-temperature storage of 28 days. This treatment resulted in high color intensity, intact cellular architectures, and positive sensory evaluation. In contrast, PL and ME treatments displayed negative effects on quality improvement, leading to the destruction of cell architectures and inhibiting anthocyanin levels. Furthermore, qPCR analysis revealed that the structural genes (C4H, CHS1, CHS2, CHI, F3H, ANS, and GST) related to anthocyanin biosynthesis and transport were the target genes and upregulated in response to the cavitation effect of US treatment.


Asunto(s)
Antocianinas , Citrus sinensis , Antocianinas/metabolismo , Citrus sinensis/química , Frutas/química , Regulación de la Expresión Génica de las Plantas , Frío
15.
Carbohydr Polym ; 320: 121234, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659819

RESUMEN

Favorable hydrogels can be used as a material to deliver bioactive molecules and improve the stability of bioactive substances, while their safety needs to be improved. In this study, protocatechuic acid (PCA) and Fe3+ were rapidly self-assembled to form a metal-phenolic network under different pH conditions, and then sodium alginate (SA) was added to prepare the SA/PCA/Fe hydrogel without adding other chemical reagents. The structural characteristic of SA/PCA/Fe hydrogel was characterized by infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy. The results showed that the structures of SA/PCA/Fe hydrogels prepared at different pH values were significantly different. The texture analysis, water-holding measurement and rheological analysis indicated that the SA/PCA/Fe hydrogel showed higher gel strength, water holding capacity and storage modulus. Thermogravimetric analysis illuminated that the SA/PCA/Fe hydrogel enhanced the thermal stability of free anthocyanins through encapsulating anthocyanins. Moreover, in vitro simulated digestion experiment revealed that SA/PCA/Fe hydrogel could control the release of anthocyanins in the simulated gastrointestinal tract. To sum up, this present study might provide a safer and feasible way for the delivery of bioactive substances.


Asunto(s)
Antocianinas , Hidrogeles , Fenoles , Alginatos , Metales , Agua , Concentración de Iones de Hidrógeno
16.
Int J Biol Macromol ; 253(Pt 6): 126454, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37619688

RESUMEN

In recent years, the incidence of inflammatory bowel disease has gradually increased. Traditional drugs can reduce inflammation, but cannot be targeting released and often require the coordination with delivery systems. However, a good targeting performance delivery system is still scarce currently. Inflammation can trigger oxidative stress, producing large amounts of oxides such as nitric oxide (NO). Based on this, the present experiment innovatively designed a hydrogel delivery system with NO response that could be inflammation targeting. The hydrogel is composed of sodium alginate modified with glycerol methacrylate, crosslinked with NO response agent by photo-crosslinking method, which have low swelling (37 %) and good mechanical properties with a stable structure even at 55 °C. The results of in vitro digestion also indicated that the hydrogel had a certain tolerance to gastrointestinal digestion. And in the NO environment, it was interestingly found that the structure and mechanical properties of the hydrogels changed significantly. Moreover, hydrogels have good biocompatibility, which ensures their safe use in vivo. In conclusion, this NO-responsive-based delivery system is feasible and provides a new approach for drugs and active factors targeting delivery in the future.


Asunto(s)
Hidrogeles , Enfermedades Inflamatorias del Intestino , Humanos , Hidrogeles/química , Óxido Nítrico , Alginatos/química , Inflamación
17.
Int J Biol Macromol ; 250: 126129, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37541470

RESUMEN

Citrus paradisi Macf. cv. Changshanhuyou and Citrus paradisi Macf. cv. Star Ruby are two emerging processed citrus fruits. The processing produces lots of peel wastes rich in pectin. While more attentions were paid on pectin's functional properties, the quality about commercial application like gel grade was little investigated. In this study, we established a method for gel grade determination based on texture analyzer, the new method is economical and can be used on a large scale in the laboratory. The commercial application related qualities of two citrus pectins were also studied in detail. The results showed that the yields of Changshanhuyou and Star Ruby pectins (CHP and SRP) were 20.23 % and 18.33 %, respectively. The indexes of CHP and SRP mostly were in line with the commodity standards, except the dry weight loss. The gel grades of CHP and SRP determined by the new method were 109.9 and 96.8, respectively. The CHP aqueous solution exhibited higher apparent viscosity and better performance in stabilizing acidified milk drink (AMD) compared with commercial pectin. From the view of commercial application related qualities and functional properties, CHP could be a good potential commercial pectin.

18.
Food Funct ; 14(18): 8369-8382, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37606621

RESUMEN

Rosa sterilis S. D. Shi is a new variety of R. roxburghii Tratt and its fruits are rich in bioactive components, but its effects and mechanisms against intestinal inflammation are currently unknown. In this study, the main components of the ethanol extract of R. sterilis S. D. Shi fruits (RSE) were identified and its anti-inflammatory efficacy in DSS-induced mice was evaluated. A total of nine compounds were identified, including 1-O-E-cinnamoyl-(6-arabinosylglucose), ellagic acid-O-rhamnoside, (epi) catechin, niga-ichigoside F1, etc. The results demonstrated that RSE ameliorated DSS-induced inflammation in mouse colon tissues by increasing mucin expression, reducing the production of TNF-α, IL-1ß, and IL-6, inhibiting the mRNA expression of COX-2 and iNOS, regulating the composition of gut microbiota through suppressing Escherichia-Shigella while increasing Akkermansia muciniphila, and promoting the production of SCFAs, especially acetic acid. Briefly, RSE showed outstanding potential for anti-inflammatory activity and is expected to be a promising dietary supplement for healthy individuals to prevent or relieve colitis and colitis-related diseases, which provided a new direction for functional food development.


Asunto(s)
Catequina , Colitis , Rosa , Animales , Ratones , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Inflamación , Ácido Acético
19.
ACS Appl Mater Interfaces ; 15(32): 38910-38929, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37550824

RESUMEN

Antibacterial materials are urgently needed to combat bacterial contamination, growth, or attachment on contact surfaces, as bacterial infections remain a public health crisis worldwide. Here, a novel ultrasound-assisted method is utilized for the first time to fabricate oxidative chlorine-loaded AH@PBAT/PBF-Cl films with more superior grafting efficiency and rechargeable antibacterial effect than those from conventional techniques. The films remarkably inactivate 99.9999% Escherichia coli and Staphylococcus aureus cells, inducing noticeable cell deformations and mechanical instability. The specific antibacterial mechanism against E. coli used as a model organism is unveiled using several cell envelope structural and functional analyses combined with proteomics, peptidoglycomics, and fluorescence probe techniques. Film treatment partially neutralizes the bacterial surface charge, induces oxidative stress and cytoskeleton deformity, alters membrane properties, and disrupts the expression of key proteins involved in the synthesis and transport of the lipopolysaccharide and peptidoglycan, indicating the cell envelope as the primary target. The films specifically target lipopolysaccharides, resulting in structural impairment of the polysaccharide and lipid A components, and inhibit peptidoglycan precursor synthesis. Together, these lead to metabolic disorders, membrane dysfunction, structural collapse, and eventual death. Given the films' antibacterial effects via the disruption of key cell envelope components, they can potentially combat a wide range of bacteria. These findings lay a theoretical basis for developing efficient antibacterial materials for food safety or biomedical applications.


Asunto(s)
Escherichia coli , Peptidoglicano , Antibacterianos/farmacología , Antibacterianos/química , Aminas/química
20.
Food Chem ; 429: 136827, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37459712

RESUMEN

Glycosidically-bound volatiles (GBV) can be released by exogenous acid and enzymatic hydrolysis. However, the liberation of GBV in natural juice is not reported. It was found that part of the GBV in orange juice (OJ) under natural conditions can be released and the types of volatiles were considerably fewer than the ones under exogenous acid, or enzymatic hydrolysis. Seven types of aroma substances were released under endogenous enzyme, among which ethyl 3-hydroxyhexanoate and eugenol are characteristic aroma substances of OJ. Six kinds of aroma substances can be released under natural acidic conditions, none are characteristic aroma substances of OJ. Ten kinds of substances were released under endogenous enzymes in combination with the acidic condition, among which benzyl alcohol, ethyl 3-hydroxyhexanoate, citral, and eugenol are characteristic aroma substances of OJ. The results indicated that GBV may play an important role in resisting the decrease of free aroma in OJ during storage.


Asunto(s)
Citrus sinensis , Eugenol , Odorantes/análisis , Frutas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...