Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(10): e2303582, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160261

RESUMEN

Despite their unique characteristics, 2D MXenes with sole photothermal conversion ability are required to explore their superfluous abilities in biomedicine. The small-molecule-based chemotherapeutics suffer from various shortcomings of time-consuming and expensiveness concerning theoretical and performance (preclinical/clinical) checks. This study demonstrates the fabrication of Ti3C2 MXene nanosheets (TC-MX NSs) and subsequent decoration with transition metal oxides, that is, copper oxide (Cu2O/MX, CO-MX NCs) as drugless nanoarchitectonics for synergistic photothermal (PTT)-chemodynamic therapeutic (CDT) efficacies. Initially, the monolayer/few-layered TC-MX NSs are prepared using the chemical etching-assisted ultrasonic exfoliation method and then deposited with Cu2O nanoconstructs using the in situ reduction method. Further, the photothermal ablation under near-infrared (NIR)-II laser irradiation shows PTT effects of CO-MX NCs. The deposited Cu2O on TC-MX NSs facilitates the release of copper (Cu+) ions in the acidic microenvironment intracellularly for Fenton-like reaction-assisted CDT effects and enriched PTT effects synergistically. Mechanistically, these deadly free radicals intracellularly imbalance the glutathione (GSH) levels and result in mitochondrial dysfunction, inducing apoptosis of 4T1 cells. Finally, the in vivo investigations in BALB/c mice confirm the substantial ablation of breast carcinoma. Together, these findings demonstrate the potential synergistic PTT-CDT effects of the designed CO-MX NCs as drugless nanoarchitectonics against breast carcinoma.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Neoplasias , Animales , Ratones , Humanos , Femenino , Cobre/farmacología , Óxidos/farmacología , Apoptosis , Glutatión , Ratones Endogámicos BALB C , Línea Celular Tumoral , Peróxido de Hidrógeno , Microambiente Tumoral
2.
Front Plant Sci ; 14: 1144486, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37235013

RESUMEN

The total number of spikelets (TSPN) and the number of fertile spikelets (FSPN) affect the final number of grains per spikelet in wheat. This study constructed a high-density genetic map using 55K single nucleotide polymorphism (SNP) arrays from a population of 152 recombinant inbred lines (RIL) from crossing the wheat accessions 10-A and B39. Twenty-four quantitative trait loci (QTLs) for TSPN and 18 QTLs for FSPN were localized based on the phenotype in 10 environments in 2019-2021. Two major QTLs, QTSPN/QFSPN.sicau-2D.4 (34.43-47.43 Mb) and QTSPN/QFSPN.sicau-2D.5(32.97-34.43 Mb), explained 13.97%-45.90% of phenotypic variation. Linked kompetitive allele-specific PCR (KASP) markers further validated these two QTLs and revealed that QTSPN.sicau-2D.4 had less effect on TSPN than QTSPN.sicau-2D.5 in 10-A×BE89 (134 RILs) and 10-A×Chuannong 16 (192 RILs) populations, and one population of Sichuan wheat (233 accessions). The alleles combination haplotype 3 with the allele from 10-A of QTSPN/QFSPN.sicau-2D.5 and the allele from B39 of QTSPN.sicau-2D.4 resulted in the highest number of spikelets. In contrast, the allele from B39 for both loci resulted in the lowest number of spikelets. Using bulk-segregant analysis-exon capture sequencing, six SNP hot spots that included 31 candidate genes were identified in the two QTLs. We identified Ppd-D1a from B39 and Ppd-D1d from 10-A and further analyzed Ppd-D1 variation in wheat. These results identified loci and molecular markers with potential utility for wheat breeding and laid a foundation for further fine mapping and cloning of the two loci.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...