Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Radiol Artif Intell ; 6(3): e230333, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38446044

RESUMEN

Purpose To develop and externally test a scan-to-prediction deep learning pipeline for noninvasive, MRI-based BRAF mutational status classification for pediatric low-grade glioma. Materials and Methods This retrospective study included two pediatric low-grade glioma datasets with linked genomic and diagnostic T2-weighted MRI data of patients: Dana-Farber/Boston Children's Hospital (development dataset, n = 214 [113 (52.8%) male; 104 (48.6%) BRAF wild type, 60 (28.0%) BRAF fusion, and 50 (23.4%) BRAF V600E]) and the Children's Brain Tumor Network (external testing, n = 112 [55 (49.1%) male; 35 (31.2%) BRAF wild type, 60 (53.6%) BRAF fusion, and 17 (15.2%) BRAF V600E]). A deep learning pipeline was developed to classify BRAF mutational status (BRAF wild type vs BRAF fusion vs BRAF V600E) via a two-stage process: (a) three-dimensional tumor segmentation and extraction of axial tumor images and (b) section-wise, deep learning-based classification of mutational status. Knowledge-transfer and self-supervised approaches were investigated to prevent model overfitting, with a primary end point of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, a novel metric, center of mass distance, was developed to quantify the model attention around the tumor. Results A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest classification performance with an AUC of 0.82 (95% CI: 0.72, 0.91), 0.87 (95% CI: 0.61, 0.97), and 0.85 (95% CI: 0.66, 0.95) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively, on internal testing. On external testing, the pipeline yielded an AUC of 0.72 (95% CI: 0.64, 0.86), 0.78 (95% CI: 0.61, 0.89), and 0.72 (95% CI: 0.64, 0.88) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively. Conclusion Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pediatric low-grade glioma mutational status prediction in a limited data scenario. Keywords: Pediatrics, MRI, CNS, Brain/Brain Stem, Oncology, Feature Detection, Diagnosis, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Niño , Masculino , Femenino , Neoplasias Encefálicas/diagnóstico por imagen , Estudios Retrospectivos , Proteínas Proto-Oncogénicas B-raf/genética , Glioma/diagnóstico , Aprendizaje Automático
3.
Nat Commun ; 14(1): 6863, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945573

RESUMEN

Lean muscle mass (LMM) is an important aspect of human health. Temporalis muscle thickness is a promising LMM marker but has had limited utility due to its unknown normal growth trajectory and reference ranges and lack of standardized measurement. Here, we develop an automated deep learning pipeline to accurately measure temporalis muscle thickness (iTMT) from routine brain magnetic resonance imaging (MRI). We apply iTMT to 23,876 MRIs of healthy subjects, ages 4 through 35, and generate sex-specific iTMT normal growth charts with percentiles. We find that iTMT was associated with specific physiologic traits, including caloric intake, physical activity, sex hormone levels, and presence of malignancy. We validate iTMT across multiple demographic groups and in children with brain tumors and demonstrate feasibility for individualized longitudinal monitoring. The iTMT pipeline provides unprecedented insights into temporalis muscle growth during human development and enables the use of LMM tracking to inform clinical decision-making.


Asunto(s)
Gráficos de Crecimiento , Músculo Temporal , Masculino , Femenino , Humanos , Niño , Músculo Temporal/diagnóstico por imagen , Músculo Temporal/patología
4.
medRxiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37609311

RESUMEN

Purpose: To develop and externally validate a scan-to-prediction deep-learning pipeline for noninvasive, MRI-based BRAF mutational status classification for pLGG. Materials and Methods: We conducted a retrospective study of two pLGG datasets with linked genomic and diagnostic T2-weighted MRI of patients: BCH (development dataset, n=214 [60 (28%) BRAF fusion, 50 (23%) BRAF V600E, 104 (49%) wild-type), and Child Brain Tumor Network (CBTN) (external validation, n=112 [60 (53%) BRAF-Fusion, 17 (15%) BRAF-V600E, 35 (32%) wild-type]). We developed a deep learning pipeline to classify BRAF mutational status (V600E vs. fusion vs. wildtype) via a two-stage process: 1) 3D tumor segmentation and extraction of axial tumor images, and 2) slice-wise, deep learning-based classification of mutational status. We investigated knowledge-transfer and self-supervised approaches to prevent model overfitting with a primary endpoint of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, we developed a novel metric, COMDist, that quantifies the accuracy of model attention around the tumor. Results: A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest macro-average AUC (0.82 [95% CI: 0.70-0.90]) and accuracy (77%) on internal validation, with an AUC improvement of +17.7% and a COMDist improvement of +6.4% versus training from scratch. On external validation, the TransferX model yielded AUC (0.73 [95% CI 0.68-0.88]) and accuracy (75%). Conclusion: Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pLGG mutational status prediction in a limited data scenario.

5.
JAMA Netw Open ; 6(8): e2328280, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37561460

RESUMEN

Importance: Sarcopenia is an established prognostic factor in patients with head and neck squamous cell carcinoma (HNSCC); the quantification of sarcopenia assessed by imaging is typically achieved through the skeletal muscle index (SMI), which can be derived from cervical skeletal muscle segmentation and cross-sectional area. However, manual muscle segmentation is labor intensive, prone to interobserver variability, and impractical for large-scale clinical use. Objective: To develop and externally validate a fully automated image-based deep learning platform for cervical vertebral muscle segmentation and SMI calculation and evaluate associations with survival and treatment toxicity outcomes. Design, Setting, and Participants: For this prognostic study, a model development data set was curated from publicly available and deidentified data from patients with HNSCC treated at MD Anderson Cancer Center between January 1, 2003, and December 31, 2013. A total of 899 patients undergoing primary radiation for HNSCC with abdominal computed tomography scans and complete clinical information were selected. An external validation data set was retrospectively collected from patients undergoing primary radiation therapy between January 1, 1996, and December 31, 2013, at Brigham and Women's Hospital. The data analysis was performed between May 1, 2022, and March 31, 2023. Exposure: C3 vertebral skeletal muscle segmentation during radiation therapy for HNSCC. Main Outcomes and Measures: Overall survival and treatment toxicity outcomes of HNSCC. Results: The total patient cohort comprised 899 patients with HNSCC (median [range] age, 58 [24-90] years; 140 female [15.6%] and 755 male [84.0%]). Dice similarity coefficients for the validation set (n = 96) and internal test set (n = 48) were 0.90 (95% CI, 0.90-0.91) and 0.90 (95% CI, 0.89-0.91), respectively, with a mean 96.2% acceptable rate between 2 reviewers on external clinical testing (n = 377). Estimated cross-sectional area and SMI values were associated with manually annotated values (Pearson r = 0.99; P < .001) across data sets. On multivariable Cox proportional hazards regression, SMI-derived sarcopenia was associated with worse overall survival (hazard ratio, 2.05; 95% CI, 1.04-4.04; P = .04) and longer feeding tube duration (median [range], 162 [6-1477] vs 134 [15-1255] days; hazard ratio, 0.66; 95% CI, 0.48-0.89; P = .006) than no sarcopenia. Conclusions and Relevance: This prognostic study's findings show external validation of a fully automated deep learning pipeline to accurately measure sarcopenia in HNSCC and an association with important disease outcomes. The pipeline could enable the integration of sarcopenia assessment into clinical decision making for individuals with HNSCC.


Asunto(s)
Aprendizaje Profundo , Neoplasias de Cabeza y Cuello , Sarcopenia , Humanos , Masculino , Femenino , Persona de Mediana Edad , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico por imagen , Estudios Retrospectivos , Sarcopenia/diagnóstico por imagen , Sarcopenia/complicaciones , Neoplasias de Cabeza y Cuello/complicaciones , Neoplasias de Cabeza y Cuello/diagnóstico por imagen
6.
Cancer Res Commun ; 3(6): 1140-1151, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37397861

RESUMEN

Artificial intelligence (AI) and machine learning (ML) are becoming critical in developing and deploying personalized medicine and targeted clinical trials. Recent advances in ML have enabled the integration of wider ranges of data including both medical records and imaging (radiomics). However, the development of prognostic models is complex as no modeling strategy is universally superior to others and validation of developed models requires large and diverse datasets to demonstrate that prognostic models developed (regardless of method) from one dataset are applicable to other datasets both internally and externally. Using a retrospective dataset of 2,552 patients from a single institution and a strict evaluation framework that included external validation on three external patient cohorts (873 patients), we crowdsourced the development of ML models to predict overall survival in head and neck cancer (HNC) using electronic medical records (EMR) and pretreatment radiological images. To assess the relative contributions of radiomics in predicting HNC prognosis, we compared 12 different models using imaging and/or EMR data. The model with the highest accuracy used multitask learning on clinical data and tumor volume, achieving high prognostic accuracy for 2-year and lifetime survival prediction, outperforming models relying on clinical data only, engineered radiomics, or complex deep neural network architecture. However, when we attempted to extend the best performing models from this large training dataset to other institutions, we observed significant reductions in the performance of the model in those datasets, highlighting the importance of detailed population-based reporting for AI/ML model utility and stronger validation frameworks. We have developed highly prognostic models for overall survival in HNC using EMRs and pretreatment radiological images based on a large, retrospective dataset of 2,552 patients from our institution.Diverse ML approaches were used by independent investigators. The model with the highest accuracy used multitask learning on clinical data and tumor volume.External validation of the top three performing models on three datasets (873 patients) with significant differences in the distributions of clinical and demographic variables demonstrated significant decreases in model performance. Significance: ML combined with simple prognostic factors outperformed multiple advanced CT radiomics and deep learning methods. ML models provided diverse solutions for prognosis of patients with HNC but their prognostic value is affected by differences in patient populations and require extensive validation.


Asunto(s)
Aprendizaje Profundo , Neoplasias de Cabeza y Cuello , Humanos , Pronóstico , Estudios Retrospectivos , Inteligencia Artificial , Neoplasias de Cabeza y Cuello/diagnóstico por imagen
7.
medRxiv ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37425854

RESUMEN

Purpose: Artificial intelligence (AI)-automated tumor delineation for pediatric gliomas would enable real-time volumetric evaluation to support diagnosis, treatment response assessment, and clinical decision-making. Auto-segmentation algorithms for pediatric tumors are rare, due to limited data availability, and algorithms have yet to demonstrate clinical translation. Methods: We leveraged two datasets from a national brain tumor consortium (n=184) and a pediatric cancer center (n=100) to develop, externally validate, and clinically benchmark deep learning neural networks for pediatric low-grade glioma (pLGG) segmentation using a novel in-domain, stepwise transfer learning approach. The best model [via Dice similarity coefficient (DSC)] was externally validated and subject to randomized, blinded evaluation by three expert clinicians wherein clinicians assessed clinical acceptability of expert- and AI-generated segmentations via 10-point Likert scales and Turing tests. Results: The best AI model utilized in-domain, stepwise transfer learning (median DSC: 0.877 [IQR 0.715-0.914]) versus baseline model (median DSC 0.812 [IQR 0.559-0.888]; p<0.05). On external testing (n=60), the AI model yielded accuracy comparable to inter-expert agreement (median DSC: 0.834 [IQR 0.726-0.901] vs. 0.861 [IQR 0.795-0.905], p=0.13). On clinical benchmarking (n=100 scans, 300 segmentations from 3 experts), the experts rated the AI model higher on average compared to other experts (median Likert rating: 9 [IQR 7-9]) vs. 7 [IQR 7-9], p<0.05 for each). Additionally, the AI segmentations had significantly higher (p<0.05) overall acceptability compared to experts on average (80.2% vs. 65.4%). Experts correctly predicted the origins of AI segmentations in an average of 26.0% of cases. Conclusions: Stepwise transfer learning enabled expert-level, automated pediatric brain tumor auto-segmentation and volumetric measurement with a high level of clinical acceptability. This approach may enable development and translation of AI imaging segmentation algorithms in limited data scenarios.

8.
Eur Radiol ; 33(12): 9109-9119, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37438642

RESUMEN

OBJECTIVES: Using diffusion basis spectrum imaging (DBSI) to examine the microstructural changes in the substantia nigra (SN) and global white matter (WM) tracts of patients with early-stage PD. METHODS: Thirty-seven age- and sex-matched patients with early-stage PD and 22 healthy controls (HCs) were enrolled in this study. All participants underwent clinical assessments and diffusion-weighted MRI scans, analyzed by diffusion tensor imaging (DTI) and DBSI to assess the pathologies of PD in SN and global WM tracts. RESULTS: The lower DTI fraction anisotropy (FA) was seen in SN of PD patients (PD: 0.316 ± 0.034 vs HCs: 0.331 ± 0.019, p = 0.015). The putative cells marker-DBSI-restricted fraction (PD: 0.132 ± 0.051 vs HCs: 0.105 ± 0.039, p = 0.031) and the edema/extracellular space marker-DBSI non-restricted-fraction (PD: 0.150 ± 0.052 vs HCs: 0.122 ± 0.052, p = 0.020) were both significantly higher and the density of axons/dendrites marker-DBSI fiber-fraction (PD: 0.718 ± 0.073 vs HCs: 0.773 ± 0.071, p = 0.003) was significantly lower in SN of PD patients. DBSI-restricted fraction in SN was negatively correlated with HAMA scores (r = - 0.501, p = 0.005), whereas DTI-FA was not correlated with any clinical scales. In WM tracts, only higher DTI axial diffusivity (AD) among DTI metrics was found in multiple WM regions in PD, while lower DBSI fiber-fraction and higher DBSI non-restricted-fraction were detected in multiple WM regions. DBSI non-restricted-fraction in both left fornix (cres)/stria terminalis (r = -0.472, p = 0.004) and right posterior thalamic radiation (r = - 0.467, p = 0.005) was negatively correlated with MMSE scores. CONCLUSION: DBSI could potentially detect and quantify the extent of inflammatory cell infiltration, fiber/dendrite loss, and edema in both SN and WM tracts in patients with early-stage PD, a finding remains to be further investigated through more extensive longitudinal DBSI analysis. CLINICAL RELEVANCE STATEMENT: Our study shows that DBSI indexes can potentially detect early-stage PD's pathological changes, with a notable ability to distinguish between inflammation and edema. This implies that DBSI has the potential to be an imaging biomarker for early PD diagnosis. KEY POINTS: • Diffusion basis spectrum imaging detected higher restricted-fraction in Parkinson's disease, potentially reflecting inflammatory cell infiltration. • Diffusion basis spectrum imaging detected higher non-restricted-fraction and lower fiber-fraction in Parkinson's disease, indicating the presence of edema and/or dopaminergic neuronal/dendritic loss. • Diffusion basis spectrum imaging metrics correlated with non-motor symptoms, suggesting its potential diagnostic role to detect early-stage PD dysfunctions.


Asunto(s)
Enfermedad de Parkinson , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Sustancia Blanca/patología , Enfermedad de Parkinson/patología , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/patología , Edema/patología
9.
Neurooncol Adv ; 5(1): vdad050, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215950

RESUMEN

Background: Following chemoradiotherapy for high-grade glioma (HGG), it is often challenging to distinguish treatment changes from true tumor progression using conventional MRI. The diffusion basis spectrum imaging (DBSI) hindered fraction is associated with tissue edema or necrosis, which are common treatment-related changes. We hypothesized that DBSI hindered fraction may augment conventional imaging for earlier diagnosis of progression versus treatment effect. Methods: Adult patients were prospectively recruited if they had a known histologic diagnosis of HGG and completed standard-of-care chemoradiotherapy. DBSI and conventional MRI data were acquired longitudinally beginning 4 weeks post-radiation. Conventional MRI and DBSI metrics were compared with respect to their ability to diagnose progression versus treatment effect. Results: Twelve HGG patients were enrolled between August 2019 and February 2020, and 9 were ultimately analyzed (5 progression, 4 treatment effect). Within new or enlarging contrast-enhancing regions, DBSI hindered fraction was significantly higher in the treatment effect group compared to progression group (P = .0004). Compared to serial conventional MRI alone, inclusion of DBSI would have led to earlier diagnosis of either progression or treatment effect in 6 (66.7%) patients by a median of 7.7 (interquartile range = 0-20.1) weeks. Conclusions: In the first longitudinal prospective study of DBSI in adult HGG patients, we found that in new or enlarging contrast-enhancing regions following therapy, DBSI hindered fraction is elevated in cases of treatment effect compared to those with progression. Hindered fraction map may be a valuable adjunct to conventional MRI to distinguish tumor progression from treatment effect.

10.
Lancet Digit Health ; 5(6): e360-e369, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37087370

RESUMEN

BACKGROUND: Pretreatment identification of pathological extranodal extension (ENE) would guide therapy de-escalation strategies for in human papillomavirus (HPV)-associated oropharyngeal carcinoma but is diagnostically challenging. ECOG-ACRIN Cancer Research Group E3311 was a multicentre trial wherein patients with HPV-associated oropharyngeal carcinoma were treated surgically and assigned to a pathological risk-based adjuvant strategy of observation, radiation, or concurrent chemoradiation. Despite protocol exclusion of patients with overt radiographic ENE, more than 30% had pathological ENE and required postoperative chemoradiation. We aimed to evaluate a CT-based deep learning algorithm for prediction of ENE in E3311, a diagnostically challenging cohort wherein algorithm use would be impactful in guiding decision-making. METHODS: For this retrospective evaluation of deep learning algorithm performance, we obtained pretreatment CTs and corresponding surgical pathology reports from the multicentre, randomised de-escalation trial E3311. All enrolled patients on E3311 required pretreatment and diagnostic head and neck imaging; patients with radiographically overt ENE were excluded per study protocol. The lymph node with largest short-axis diameter and up to two additional nodes were segmented on each scan and annotated for ENE per pathology reports. Deep learning algorithm performance for ENE prediction was compared with four board-certified head and neck radiologists. The primary endpoint was the area under the curve (AUC) of the receiver operating characteristic. FINDINGS: From 178 collected scans, 313 nodes were annotated: 71 (23%) with ENE in general, 39 (13%) with ENE larger than 1 mm ENE. The deep learning algorithm AUC for ENE classification was 0·86 (95% CI 0·82-0·90), outperforming all readers (p<0·0001 for each). Among radiologists, there was high variability in specificity (43-86%) and sensitivity (45-96%) with poor inter-reader agreement (κ 0·32). Matching the algorithm specificity to that of the reader with highest AUC (R2, false positive rate 22%) yielded improved sensitivity to 75% (+ 13%). Setting the algorithm false positive rate to 30% yielded 90% sensitivity. The algorithm showed improved performance compared with radiologists for ENE larger than 1 mm (p<0·0001) and in nodes with short-axis diameter 1 cm or larger. INTERPRETATION: The deep learning algorithm outperformed experts in predicting pathological ENE on a challenging cohort of patients with HPV-associated oropharyngeal carcinoma from a randomised clinical trial. Deep learning algorithms should be evaluated prospectively as a treatment selection tool. FUNDING: ECOG-ACRIN Cancer Research Group and the National Cancer Institute of the US National Institutes of Health.


Asunto(s)
Carcinoma , Aprendizaje Profundo , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Humanos , Virus del Papiloma Humano , Estudios Retrospectivos , Infecciones por Papillomavirus/diagnóstico por imagen , Infecciones por Papillomavirus/complicaciones , Extensión Extranodal , Neoplasias Orofaríngeas/diagnóstico por imagen , Neoplasias Orofaríngeas/patología , Algoritmos , Carcinoma/complicaciones , Tomografía Computarizada por Rayos X
12.
medRxiv ; 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36945519

RESUMEN

Purpose: Sarcopenia is an established prognostic factor in patients diagnosed with head and neck squamous cell carcinoma (HNSCC). The quantification of sarcopenia assessed by imaging is typically achieved through the skeletal muscle index (SMI), which can be derived from cervical neck skeletal muscle (SM) segmentation and cross-sectional area. However, manual SM segmentation is labor-intensive, prone to inter-observer variability, and impractical for large-scale clinical use. To overcome this challenge, we have developed and externally validated a fully-automated image-based deep learning (DL) platform for cervical vertebral SM segmentation and SMI calculation, and evaluated the relevance of this with survival and toxicity outcomes. Materials and Methods: 899 patients diagnosed as having HNSCC with CT scans from multiple institutes were included, with 335 cases utilized for training, 96 for validation, 48 for internal testing and 393 for external testing. Ground truth single-slice segmentations of SM at the C3 vertebra level were manually generated by experienced radiation oncologists. To develop an efficient method of segmenting the SM, a multi-stage DL pipeline was implemented, consisting of a 2D convolutional neural network (CNN) to select the middle slice of C3 section and a 2D U-Net to segment SM areas. The model performance was evaluated using the Dice Similarity Coefficient (DSC) as the primary metric for the internal test set, and for the external test set the quality of automated segmentation was assessed manually by two experienced radiation oncologists. The L3 skeletal muscle area (SMA) and SMI were then calculated from the C3 cross sectional area (CSA) of the auto-segmented SM. Finally, established SMI cut-offs were used to perform further analyses to assess the correlation with survival and toxicity endpoints in the external institution with univariable and multivariable Cox regression. Results: DSCs for validation set (n = 96) and internal test set (n = 48) were 0.90 (95% CI: 0.90 - 0.91) and 0.90 (95% CI: 0.89 - 0.91), respectively. The predicted CSA is highly correlated with the ground-truth CSA in both validation (r = 0.99, p < 0.0001) and test sets (r = 0.96, p < 0.0001). In the external test set (n = 377), 96.2% of the SM segmentations were deemed acceptable by consensus expert review. Predicted SMA and SMI values were highly correlated with the ground-truth values, with Pearson r ß 0.99 (p < 0.0001) for both the female and male patients in all datasets. Sarcopenia was associated with worse OS (HR 2.05 [95% CI 1.04 - 4.04], p = 0.04) and longer PEG tube duration (median 162 days vs. 134 days, HR 1.51 [95% CI 1.12 - 2.08], p = 0.006 in multivariate analysis. Conclusion: We developed and externally validated a fully-automated platform that strongly correlates with imaging-assessed sarcopenia in patients with H&N cancer that correlates with survival and toxicity outcomes. This study constitutes a significant stride towards the integration of sarcopenia assessment into decision-making for individuals diagnosed with HNSCC. SUMMARY STATEMENT: In this study, we developed and externally validated a deep learning model to investigate the impact of sarcopenia, defined as the loss of skeletal muscle mass, on patients with head and neck squamous cell carcinoma (HNSCC) undergoing radiotherapy. We demonstrated an efficient, fullyautomated deep learning pipeline that can accurately segment C3 skeletal muscle area, calculate cross-sectional area, and derive a skeletal muscle index to diagnose sarcopenia from a standard of care CT scan. In multi-institutional data, we found that pre-treatment sarcopenia was associated with significantly reduced overall survival and an increased risk of adverse events. Given the increased vulnerability of patients with HNSCC, the assessment of sarcopenia prior to radiotherapy may aid in informed treatment decision-making and serve as a predictive marker for the necessity of early supportive measures.

13.
Lancet Digit Health ; 4(9): e657-e666, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36028289

RESUMEN

BACKGROUND: Artificial intelligence (AI) and deep learning have shown great potential in streamlining clinical tasks. However, most studies remain confined to in silico validation in small internal cohorts, without external validation or data on real-world clinical utility. We developed a strategy for the clinical validation of deep learning models for segmenting primary non-small-cell lung cancer (NSCLC) tumours and involved lymph nodes in CT images, which is a time-intensive step in radiation treatment planning, with large variability among experts. METHODS: In this observational study, CT images and segmentations were collected from eight internal and external sources from the USA, the Netherlands, Canada, and China, with patients from the Maastro and Harvard-RT1 datasets used for model discovery (segmented by a single expert). Validation consisted of interobserver and intraobserver benchmarking, primary validation, functional validation, and end-user testing on the following datasets: multi-delineation, Harvard-RT1, Harvard-RT2, RTOG-0617, NSCLC-radiogenomics, Lung-PET-CT-Dx, RIDER, and thorax phantom. Primary validation consisted of stepwise testing on increasingly external datasets using measures of overlap including volumetric dice (VD) and surface dice (SD). Functional validation explored dosimetric effect, model failure modes, test-retest stability, and accuracy. End-user testing with eight experts assessed automated segmentations in a simulated clinical setting. FINDINGS: We included 2208 patients imaged between 2001 and 2015, with 787 patients used for model discovery and 1421 for model validation, including 28 patients for end-user testing. Models showed an improvement over the interobserver benchmark (multi-delineation dataset; VD 0·91 [IQR 0·83-0·92], p=0·0062; SD 0·86 [0·71-0·91], p=0·0005), and were within the intraobserver benchmark. For primary validation, AI performance on internal Harvard-RT1 data (segmented by the same expert who segmented the discovery data) was VD 0·83 (IQR 0·76-0·88) and SD 0·79 (0·68-0·88), within the interobserver benchmark. Performance on internal Harvard-RT2 data segmented by other experts was VD 0·70 (0·56-0·80) and SD 0·50 (0·34-0·71). Performance on RTOG-0617 clinical trial data was VD 0·71 (0·60-0·81) and SD 0·47 (0·35-0·59), with similar results on diagnostic radiology datasets NSCLC-radiogenomics and Lung-PET-CT-Dx. Despite these geometric overlap results, models yielded target volumes with equivalent radiation dose coverage to those of experts. We also found non-significant differences between de novo expert and AI-assisted segmentations. AI assistance led to a 65% reduction in segmentation time (5·4 min; p<0·0001) and a 32% reduction in interobserver variability (SD; p=0·013). INTERPRETATION: We present a clinical validation strategy for AI models. We found that in silico geometric segmentation metrics might not correlate with clinical utility of the models. Experts' segmentation style and preference might affect model performance. FUNDING: US National Institutes of Health and EU European Research Council.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Aprendizaje Profundo , Neoplasias Pulmonares , Algoritmos , Inteligencia Artificial , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estados Unidos
14.
Radiol Artif Intell ; 4(3): e210285, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35652117

RESUMEN

Identifying the presence of intravenous contrast material on CT scans is an important component of data curation for medical imaging-based artificial intelligence model development and deployment. Use of intravenous contrast material is often poorly documented in imaging metadata, necessitating impractical manual annotation by clinician experts. Authors developed a convolutional neural network (CNN)-based deep learning platform to identify intravenous contrast enhancement on CT scans. For model development and validation, authors used six independent datasets of head and neck (HN) and chest CT scans, totaling 133 480 axial two-dimensional sections from 1979 scans, which were manually annotated by clinical experts. Five CNN models were trained first on HN scans for contrast enhancement detection. Model performances were evaluated at the patient level on a holdout set and external test set. Models were then fine-tuned on chest CT data and externally validated. This study found that Digital Imaging and Communications in Medicine metadata tags for intravenous contrast material were missing or erroneous for 1496 scans (75.6%). An EfficientNetB4-based model showed the best performance, with areas under the curve (AUCs) of 0.996 and 1.0 in HN holdout (n = 216) and external (n = 595) sets, respectively, and AUCs of 1.0 and 0.980 in the chest holdout (n = 53) and external (n = 402) sets, respectively. This automated, scan-to-prediction platform is highly accurate at CT contrast enhancement detection and may be helpful for artificial intelligence model development and clinical application. Keywords: CT, Head and Neck, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Machine Learning Algorithms, Contrast Material Supplemental material is available for this article. © RSNA, 2022.

15.
Neuroimage Clin ; 31: 102732, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34166868

RESUMEN

OBJECTIVE: To prospectively determine whether diffusion basis spectrum imaging (DBSI) detects, differentiates and quantitates coexisting inflammation, demyelination, axonal injury and axon loss in mice with optic neuritis (ON) due to experimental autoimmune encephalomyelitis (EAE), and to determine if DBSI accurately measures effects of fingolimod on underlying pathology. METHODS: EAE was induced in 7-week-old C57BL/6 female mice. Visual acuity (VA) was assessed daily to detect onset of ON after which daily oral-treatment with either fingolimod (1 mg/kg) or saline was given for ten weeks. In vivo DBSI scans of optic nerves were performed at baseline, 2-, 6- and 10-weeks post treatment. DBSI-derived metrics including restricted isotropic diffusion tensor fraction (putatively reflecting cellularity), non-restricted isotropic diffusion tensor fraction (putatively reflecting vasogenic edema), DBSI-derived axonal volume, axial diffusivity, λ∥ (putatively reflecting axonal integrity), and increased radial diffusivity, λ⊥ (putatively reflecting demyelination). Mice were killed immediately after the last DBSI scan for immunohistochemical assessment. RESULTS: Optic nerves of fingolimod-treated mice exhibited significantly better (p < 0.05) VA than saline-treated group at each time point. During ten-week of treatment, DBSI-derived non-restricted and restricted-isotropic-diffusion-tensor fractions, and axonal volumes were not significantly different (p > 0.05) from the baseline values in fingolimod-treated mice. Transient DBSI-λ∥ decrease and DBSI-λ⊥ increase were detected during Fingolimod treatment. DBSI-derived metrics assessed in vivo significantly correlated (p < 0.05) with the corresponding histological markers. CONCLUSION: DBSI was used to assess changes of the underlying optic nerve pathologies in EAE mice with ON, exhibiting great potential as a noninvasive outcome measure for monitoring disease progression and therapeutic efficacy for MS.


Asunto(s)
Fármacos Neuroprotectores , Neuritis Óptica , Animales , Antiinflamatorios , Imagen de Difusión Tensora , Femenino , Clorhidrato de Fingolimod/farmacología , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Neuritis Óptica/tratamiento farmacológico
17.
Sci Rep ; 11(1): 4749, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637807

RESUMEN

High-grade pediatric brain tumors exhibit the highest cancer mortality rates in children. While conventional MRI has been widely adopted for examining pediatric high-grade brain tumors clinically, accurate neuroimaging detection and differentiation of tumor histopathology for improved diagnosis, surgical planning, and treatment evaluation, remains an unmet need in their clinical management. We employed a novel Diffusion Histology Imaging (DHI) approach employing diffusion basis spectrum imaging (DBSI) derived metrics as the input classifiers for deep neural network analysis. DHI aims to detect, differentiate, and quantify heterogeneous areas in pediatric high-grade brain tumors, which include normal white matter (WM), densely cellular tumor, less densely cellular tumor, infiltrating edge, necrosis, and hemorrhage. Distinct diffusion metric combination would thus indicate the unique distributions of each distinct tumor histology features. DHI, by incorporating DBSI metrics and the deep neural network algorithm, classified pediatric tumor histology with an overall accuracy of 85.8%. Receiver operating analysis (ROC) analysis suggested DHI's great capability in distinguishing individual tumor histology with AUC values (95% CI) of 0.984 (0.982-0.986), 0.960 (0.956-0.963), 0.991 (0.990-0.993), 0.950 (0.944-0.956), 0.977 (0.973-0.981) and 0.976 (0.972-0.979) for normal WM, densely cellular tumor, less densely cellular tumor, infiltrating edge, necrosis and hemorrhage, respectively. Our results suggest that DBSI-DNN, or DHI, accurately characterized and classified multiple tumor histologic features in pediatric high-grade brain tumors. If these results could be further validated in patients, the novel DHI might emerge as a favorable alternative to the current neuroimaging techniques to better guide biopsy and resection as well as monitor therapeutic response in patients with high-grade brain tumors.


Asunto(s)
Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Redes Neurales de la Computación , Adolescente , Neoplasias Encefálicas/patología , Niño , Femenino , Humanos , Masculino , Clasificación del Tumor/métodos , Curva ROC , Sustancia Blanca/diagnóstico por imagen
18.
NMR Biomed ; 34(1): e4414, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33015890

RESUMEN

Diffusion tensor imaging (DTI) has been employed for over 2 decades to noninvasively quantify central nervous system diseases/injuries. However, DTI is an inadequate simplification of diffusion modeling in the presence of coexisting inflammation, edema and crossing nerve fibers. We employed a tissue phantom using fixed mouse trigeminal nerves coated with various amounts of agarose gel to mimic crossing fibers in the presence of vasogenic edema. Diffusivity measures derived by DTI and diffusion basis spectrum imaging (DBSI) were compared at increasing levels of simulated edema and degrees of fiber crossing. Furthermore, we assessed the ability of DBSI, diffusion kurtosis imaging (DKI), generalized q-sampling imaging (GQI), q-ball imaging (QBI) and neurite orientation dispersion and density imaging to resolve fiber crossing, in reference to the gold standard angles measured from structural images. DTI-computed diffusivities and fractional anisotropy were significantly confounded by gel-mimicked edema and crossing fibers. Conversely, DBSI calculated accurate diffusivities of individual fibers regardless of the extent of simulated edema and degrees of fiber crossing angles. Additionally, DBSI accurately and consistently estimated crossing angles in various conditions of gel-mimicked edema when compared with the gold standard (r2 = 0.92, P = 1.9 × 10-9 , bias = 3.9°). Small crossing angles and edema significantly impact the diffusion orientation distribution function, making DKI, GQI and QBI less accurate in detecting and estimating fiber crossing angles. Lastly, we used diffusion tensor ellipsoids to demonstrate that DBSI resolves the confounds of edema and crossing fibers in the peritumoral edema region from a patient with lung cancer metastasis, while DTI failed. In summary, DBSI is able to separate two crossing fibers and accurately recover their diffusivities in a complex environment characterized by increasing crossing angles and amounts of gel-mimicked edema. DBSI also indicated better angular resolution compared with DKI, QBI and GQI.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Edema/diagnóstico por imagen , Modelos Biológicos , Fibras Nerviosas/patología , Fantasmas de Imagen , Nervio Trigémino/diagnóstico por imagen , Nervio Trigémino/patología , Animales , Anisotropía , Imagen de Difusión Tensora , Edema/patología , Femenino , Humanos , Ratones Endogámicos C57BL , Sustancia Blanca/diagnóstico por imagen
19.
Clin Cancer Res ; 26(20): 5388-5399, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32694155

RESUMEN

PURPOSE: Glioblastoma (GBM) is one of the deadliest cancers with no cure. While conventional MRI has been widely adopted to examine GBM clinically, accurate neuroimaging assessment of tumor histopathology for improved diagnosis, surgical planning, and treatment evaluation remains an unmet need in the clinical management of GBMs. EXPERIMENTAL DESIGN: We employ a novel diffusion histology imaging (DHI) approach, combining diffusion basis spectrum imaging (DBSI) and machine learning, to detect, differentiate, and quantify areas of high cellularity, tumor necrosis, and tumor infiltration in GBM. RESULTS: Gadolinium-enhanced T1-weighted or hyperintense fluid-attenuated inversion recovery failed to reflect the morphologic complexity underlying tumor in patients with GBM. Contrary to the conventional wisdom that apparent diffusion coefficient (ADC) negatively correlates with increased tumor cellularity, we demonstrate disagreement between ADC and histologically confirmed tumor cellularity in GBM specimens, whereas DBSI-derived restricted isotropic diffusion fraction positively correlated with tumor cellularity in the same specimens. By incorporating DBSI metrics as classifiers for a supervised machine learning algorithm, we accurately predicted high tumor cellularity, tumor necrosis, and tumor infiltration with 87.5%, 89.0%, and 93.4% accuracy, respectively. CONCLUSIONS: Our results suggest that DHI could serve as a favorable alternative to current neuroimaging techniques in guiding biopsy or surgery as well as monitoring therapeutic response in the treatment of GBM.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Glioblastoma/diagnóstico por imagen , Aprendizaje Automático , Adulto , Anciano , Algoritmos , Femenino , Glioblastoma/clasificación , Glioblastoma/diagnóstico , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad
20.
Ann Clin Transl Neurol ; 7(5): 695-706, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32304291

RESUMEN

OBJECTIVE: Multiple sclerosis (MS) lesions are heterogeneous with regard to inflammation, demyelination, axonal injury, and neuronal loss. We previously developed a diffusion basis spectrum imaging (DBSI) technique to better address MS lesion heterogeneity. We hypothesized that the profiles of multiple DBSI metrics can identify lesion-defining patterns. Here we test this hypothesis by combining a deep learning algorithm using deep neural network (DNN) with DBSI and other imaging methods. METHODS: Thirty-eight MS patients were scanned with diffusion-weighted imaging, magnetization transfer imaging, and standard conventional MRI sequences (cMRI). A total of 499 regions of interest were identified on standard MRI and labeled as persistent black holes (PBH), persistent gray holes (PGH), acute black holes (ABH), acute gray holes (AGH), nonblack or gray holes (NBH), and normal appearing white matter (NAWM). DBSI, diffusion tensor imaging (DTI), and magnetization transfer ratio (MTR) were applied to the 43,261 imaging voxels extracted from these ROIs. The optimized DNN with 10 fully connected hidden layers was trained using the imaging metrics of the lesion subtypes and NAWM. RESULTS: Concordance, sensitivity, specificity, and accuracy were determined for the different imaging methods. DBSI-DNN derived lesion classification achieved 93.4% overall concordance with predetermined lesion types, compared with 80.2% for DTI-DNN model, 78.3% for MTR-DNN model, and 74.2% for cMRI-DNN model. DBSI-DNN also produced the highest specificity, sensitivity, and accuracy. CONCLUSIONS: DBSI-DNN improves the classification of different MS lesion subtypes, which could aid clinical decision making. The efficacy and efficiency of DBSI-DNN shows great promise for clinical applications in automatic MS lesion detection and classification.


Asunto(s)
Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética , Sustancia Gris/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética/normas , Imagen de Difusión Tensora/normas , Femenino , Sustancia Gris/patología , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/patología , Sensibilidad y Especificidad , Sustancia Blanca/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...