Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 272: 116074, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350214

RESUMEN

The effect of underwater noise environment generated by equipment in industrial recirculating aquaculture systems (RAS) on fish is evident. However, different equipment generate noise in various frequency ranges. Understanding the effects of different frequency ranges noise on cultured species is important for optimizing the underwater acoustic environment in RAS. Given this, the effects of underwater noise across various frequency bands in RAS on the growth, physiology, and collective behavior of juvenile largemouth bass (Micropterus salmoides) were comprehensively evaluated here. In this study, three control groups were established: low-frequency noise group (80-1000 Hz, 117 dB re 1µPa RMS), high-frequency noise group (1-19 kHz, 117 dB re 1µPa RMS), and ambient group. During a 30-day experiment, it was found that: 1) industrial RAS noise with different frequency bands all had a certain inhibitory effect on the growth of fish, which the weight gain rate and product of length and depth of caudal peduncle in the ambient group were significantly higher than those of the two noise groups, with the low-frequency noise group showing significantly lower values than the high-frequency noise group; 2) industrial RAS noise had a certain degree of adverse effect on the digestive ability of fish, with the low-frequency noise group being more affected; 3) industrial RAS noise affected the collective feeding behavior of fish, with the collective feeding signal propagation efficiency and feeding intensity of the noise groups being significantly lower than those of the ambient group, and the high-frequency noise group performing better than the low-frequency noise group as a whole therein. From the above, the underwater noise across different frequency bands generated by equipment operation in industrial RAS both had an impact on juvenile largemouth bass, with the low-frequency noise group being more severely affected.


Asunto(s)
Lubina , Animales , Lubina/fisiología , Acuicultura
2.
Sci Total Environ ; 901: 166039, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37543319

RESUMEN

In this work, an electrochemical system was constructed for the simultaneous elimination of ammonia and nitrate using the prepared Ti foam/SnO2-Sb anode and a Cu foam cathode. The hybrid RF-GA method is proposed as a tool for the analysis and optimization of the simultaneous removal of ammonia and nitrate. The influence of independent variables including NaCl concentration, time, and current densities was studied. Results showed that the random forest (RF) model could successfully predict the behavior of electrochemical systems (R2 = 0.9751, RMSE = 0.4567 for the ammonia prediction model; R2 = 0.9772, RMSE = 0.0436 for the nitrate prediction model). The variable importance measures (VIM) analysis reveals that time has the maximum influence on the degradation rate of ammonia and nitrate. The RF model is used as an objective function for the genetic algorithm (GA) to determine the optimum conditions in combination with the calculated specific energy consumption. Based on the optimization results, the removal rates of ammonia and nitrate reach 94.4 % and 74.7 %, respectively, with a minimum specific energy consumption of 0.181 kwh·g-1. The electrochemical reaction mechanism of the composite pollutants in the Ti foam/SnO2-Sb and Cu foam electrode system is further elucidated. The results indicate that nitrate is reduced to nitrite, ammonia, or nitrogen gas at the cathode, accompanied by the mutual transformation of Cu(0), Cu(I), and Cu(II) on the Cu electrode. Ammonia is oxidized to nitrogen gas or nitrate at the anode. Ultimately, the nitrogen-containing composite pollutant is decomposed and discharged as nitrogen gas by cyclic redox reactions.

3.
Anim Nutr ; 14: 269-280, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37600838

RESUMEN

Medium-chain monoglycerides (MG) have been reported to affect the productive performance, gut microbiota and health of broiler chickens reared in ideal experimental conditions at home and abroad. However, the effects of MG on performance, intestinal development and gut microbiota of chickens in large-scale farms during different feed stages remain unknown. The present study was conducted on a modern farm with a total of 12,000 yellow feathered broiler chicks that were randomly allotted to 2 groups (1000 chicks/replicate, 6 replicates/group) for a 70-day trial. The control group (CON group) received a basal diet, and the treated group (MG group) was fed a basal diet containing 300 mg/kg mixed MG. The results revealed that dietary MG significantly (P < 0.05) increased the body weight and average feed intake, but notably reduced the feed conversion and mortality of chickens in large-scale production during the starter phase. The villus height of the duodenum in the MG group at 1, 2 and 7 wk of age increased notably, and the villus height to crypt depth ratio at 1, 2, 5 and 10 wk of age was improved. Dietary MG decreased the serum insulin content of chickens at 5, 7 and 10 wk of age, and decreased the serum lipopolysaccharide at 3 and 7 wk of age. The triglyceride level of chickens at 3, 5 and 10 wk of age and the low-density lipoprotein cholesterol level of chickens at 7 and 10 wk of age in the MG group decreased notably, while the high-density lipoprotein cholesterol increased significantly. Moreover, MG supplementation selectively increased the relative abundance of genus Bacteroides (family Bacteroidaceae) and Lachnospiraceae_NK4A136_group, but decreased the content of genus Rikenellaceae_RC9_gut_group, Collinsella and family Barnesiellaceae in the cecum of chickens at 3, 7 and 10 wk of age. Conclusively, these findings showed that dietary MG notably enhanced chicken performance, health and feed nutrient utilization at early ages by regulating gut microbiota, intestinal development and serum biochemical indices.

4.
Fish Shellfish Immunol ; 138: 108811, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37169108

RESUMEN

The cultivation of Chinese Perch (Siniperca chuatsi) in recirculating aquaculture systems (RASs) has become a common trend. To explore the effect of flow velocity on the growth performance, antioxidant activity, immunity and intestinal health of Chinese Perch in RAS, 240 Chinese Perch with an initial weight of 70.66 ± 0.34 g were selected and randomly divided into 4 groups: control group [CK, 0 body length per second (bl/s)], low flow velocity (LF, 0.4 bl/s), middle flow velocity (MF, 0.8 bl/s) and high flow velocity (HF, 1.2 bl/s) for a 56-days experiment. The results showed that the flow velocity significantly increased the weight gain rate and feed intake in Chinese Perch. At 1.2 bl/s, the flow velocity increased the intestinal trypsin content and intestinal villus length. Furthermore, the relative expression of appetite-related genes showed a tendency to increase, and the relative expression of appetite-inhibiting genes had a significant decrease in HF. Regarding immune-related indicators, the activities of alanine aminotransferase (ALT) and aspartate transaminase (AST) were significantly higher in MF and HF. However, the activities of lysozyme (LZM) significantly decreased. Moreover, the activities of total superoxide dismutase (T-SOD) and catalase (CAT) were significantly higher in the CK group than in the other groups. Excessive flow velocity also caused the mRNA level of most immune-relevant genes to markedly decrease. With regard to intestinal health, the intestinal content sequencing results showed that MF could increase the intestinal diversity index of Chinese Perch. In addition, with increasing flow velocity, the relative abundance of Proteobacteria gradually increased, while the proportion of Firmicutes decreased. In conclusion, although the high flow velocity could promote growth, feeding, and digestion, inhibit fat deposition and increase the intestinal microbial abundance, the flow velocity caused stress, which leads to a decline in immunity and increases the death rate and the risk of intestinal disease in Chinese Perch. These findings provide theoretical support for the development of RASs for Chinese Perch.


Asunto(s)
Antioxidantes , Percas , Animales , Percas/genética , Acuicultura , Ingestión de Alimentos , Alimentación Animal/análisis
5.
Chemosphere ; 330: 138772, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37098362

RESUMEN

Fabricating low-cost and efficient biofilm carriers for moving bed biofilm reactors in wastewater treatment is crucial for achieving environmental sustainability. Herein, a novel sponge biocarrier doped with NaOH-loaded biochar and nano ferrous oxalate (sponge-C2FeO4@NBC) was prepared and evaluated for nitrogenous compounds removal from recirculating aquaculture systems (RAS) wastewater by stepwise increasing ammonium nitrogen (NH4+-N) loading rates. The prepared NBC, sponge-C2FeO4@NBC, and matured biofilms were characterized using SEM, FTIR, BET, and N2 adsorption-desorption techniques. The results reveal that the highest removal rates of NH4+-N reached 99.28 ± 1.3% was yielded by the bioreactor filled with sponge-C2FeO4@NBC, with no obvious nitrite (NO2--N) accumulation in the final phase. The reactor packed with sponge-C2FeO4@NBC biocarrier had the highest relative abundance of functional microorganisms responsible for nitrogen metabolism than in the control reactor, confirmed from 16S rRNA gene sequencing analysis. Our study provides new insights into the newly developed biocarriers for enhancing RAS biofilters treatment performance in keeping water quality within the acceptable level for the rearing of aquatic species.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , ARN Ribosómico 16S , Nitrógeno/metabolismo , Biopelículas , Reactores Biológicos , Acuicultura , Nitrificación
6.
Metabolites ; 13(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36837827

RESUMEN

Chicken muscle yield and amino acid composition improvements with medium-chain monoglyceride (MG) supplementation were reported by previous studies, but the underlying mechanism was uncertain. This study aimed to decipher chicken amino acid improvements induced by medium-chain monoglycerides in the views of metabolomics, gene expression, and the gut microbiome. Newly hatched chicks (12,000 chicks) were weighed and randomly divided into two flocks, each with six replicates (1000 chicks per replicate), and fed a basal diet (the control group, CON) or a basal diet enriched with 300 mg/kg MG (the treated group, MG). Results demonstrated that MGs significantly increased the chicken flavor and essential and total amino acids. The serum amino acids and derivatives (betaine, l-leucine, l-glutamine, 1-methylhistide), as well as amino acid metabolism pathways in chickens, were enhanced by MG supplementation. Gene expression analysis exhibited that dietary MGs could improve muscle protein synthesis and cell growth via the mTOR/S6K1 pathway. Dietary MGs enhanced the cecal amino acid metabolism by selectively increasing the proportion of genera Lachnospiraceae_NK4A136_group and Bacteroides. Conclusively, the present study demonstrated that dietary MGs improved chicken amino acid composition via increasing both gut amino acid utilization and muscle amino acid deposition.

7.
Biosensors (Basel) ; 13(1)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36671975

RESUMEN

Given the possibility that food contaminated with SARS-CoV-2 might become an infection source, there is an urgent need for us to develop a rapid and accurate nucleic acid detection method for SARS-CoV-2 in food to ensure food safety. Here, we propose a sensitive, specific, and reliable molecular detection method for SARS-CoV-2. It has a mechanism to control amplicon contamination. Swabs from spiked frozen shrimps were used as detection samples, which were processed by heating at 95 °C for 30 s. These preprocessed samples served as the templates for subsequent amplification. A colorimetric LAMP reaction was carried out to amplify both the SARS-CoV-2 target and the MS2 phage simultaneously in one tube. MS2 phage was detected by colorimetric LAMP as the internal control, while SARS-CoV-2 was detected with a CRISPR/Cas12a system. The fluorescence results could be visually detected with an ultraviolet lamp. Meanwhile, uracil was incorporated during the LAMP reaction to provide an amplicon contamination proof mechanism. This test could detect as low as 20 copies of SARS-CoV-2 in one reaction. Additionally, the detection could be finished in 45 min. The test only needs a heating block and an ultraviolet lamp, which shows the potential for field detection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sistemas CRISPR-Cas , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad
8.
Sci Total Environ ; 857(Pt 3): 159637, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36280055

RESUMEN

Nitrate accumulation is a common phenomenon in aquaculture that can lead to eutrophication of surrounding water bodies. This study used poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as a carbon source and substrate and performed a microbial co-occurrence network ecological analysis to elucidate the denitrification processes in two packed-bed reactors with different salinities. The denitrification rate reached maximum values of 0.438 and 0.446 kg m-3 d-1 in reactor I (salinity 0 ‰) and reactor II (salinity 20 ‰), respectively. Although ammonia was formed in both systems based on dissimilation nitrate reduction to ammonia (DNRA), the concentration was very low (2.47 ± 1.99 and 2.84 ± 1.79 mg L-1); moreover, the nitrite content was average (1.01 ± 0.87 and 0.96 ± 0.86 mg L-1). These results suggested that denitrification dominated in both reactors. PHBV generally presented a stable release of DOC, although a sharp increase was observed in the start-up period of reactor II. 16S rRNA results showed that reactor I had richer microbial diversity than reactor II. Among the top ten taxa, Betaproteobacteria was the dominant class in reactor I while Gammaproteobacteria was the dominant class in reactor II. In the stable period, Thauera and Denitromonas was the most abundant genera in reactor I and reactor II, respectively. In addition, the bacterial co-occurrence network showed that reactor I had a more complex node and edge network and faster start-up time compared to reactor II; however, reactor II had a more stable nitrogen removal capacity. Higher expression of NorB and NosZ genes in reactor II indicated higher efficient denitrification in seawater system. The SEM and FTIR showed bacterial development and materials surface erosion. These findings verified the denitrification performance and niche differences between freshwater and seawater environments.


Asunto(s)
Nitratos , Aguas Residuales , Nitratos/metabolismo , Desnitrificación , Reactores Biológicos/microbiología , ARN Ribosómico 16S/genética , Amoníaco/metabolismo , Electrones , Poliésteres/metabolismo , Hidroxibutiratos/metabolismo , Acuicultura , Bacterias/metabolismo , Nitrógeno/metabolismo
9.
ACS Appl Mater Interfaces ; 14(47): 53314-53322, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36382563

RESUMEN

Since room temperature management consumes a large amount of building energy, thermochromic smart windows have been extensively used for temperature regulation and energy management. However, the development of the smart window is still limited by its simple thermochromic performance, unreasonable thermochromic temperature, and the lack of additional stimulation conditions. In this work, a dual-responsive hydrogel was developed by introducing sodium dodecyl sulfate (SDS) and sodium chloride into the cross-linking network of poly(N-isopropylacrylamide) (PNIPAM) and polyacrylamide (PAM) for energy-saving and privacy protection. By controlling the temperature from low (<15 °C) to medium (15-28 °C) to high (>28 °C), the dual-responsive hydrogel achieved a reversible three-stage transition of opaque-transparent-translucent. The hydrogel exhibited a satisfactory solar modulation ability (Tlum = 80.3%, ΔTsol,15-18°C = 72.9%, ΔTsol,18-35°C = 42.7%) and effective IR and UV shielding at high (or low) temperatures. Moreover, compared with traditional windows, smart windows made of dual-responsive hydrogels could offer better thermal insulation and heat preservation. The electrochromic properties of the dual-responsive hydrogel presented a facile strategy to meet the needs of different situations. The dual-responsive hydrogel features energy-saving, privacy protection, three-stage optical modulation, and multistimulus responsiveness, making it an ideal smart window candidate.

10.
Chemosphere ; 303(Pt 3): 135097, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35636603

RESUMEN

The moving bed bioreactor (MBBR) process has drawn more attention as a promising biological wastewater treatment process. Nevertheless, achieving quick start-up and microbial biofilm formation remains a significant challenge. Consequently, the present study investigated a novel chitosan-based natural sludge (CS@NGS) seeding strategy for the accelerated start-up of MBBR. Three identical bioreactors were employed; the first bioreactor was without sludge seed as the control (BR1), the second was inoculated only with sludge (BR2), and the third was inoculated with CS@NGS according to the proposed seeding method (BR3). All bioreactors were utilised to treat simulated recirculating aquaculture systems (RAS) effluent. Resultantly, the CS@NGS shortened the start-up period from over twenty to seven days due to the enhanced initial microbial adhesion and biofilm formation. Under optimal conditions, the ammonium removal in BR3 approached 100%, which was relatively higher than BR2 (96.35 ± 1.12%) and BR1 (92.56 ± 2.17%). Moreover, a low nitrite accumulation was exhibited in the effluents, approximately ≤0.03 mg L-1. The process performance correlated positively with core bacteria from the genera Nakamurella, Hyphomicrobium, Nitrospira, Paenarthrobacter, Rhodococcus, and Stenotrophobacter. The quantitative polymerase chain reaction (qPCR) results demonstrated that the CS@NGS enhanced the expressions of amoA, nxrB, nirK, nirS, narG, and napA nitrogen metabolism-related functional genes to varying degrees. The present study findings can assist the rapid start-up of aquaculture biofilters utilised to solve high nitrite and ammonia accumulation in recirculated water from industrial RAS.


Asunto(s)
Quitosano , Aguas del Alcantarillado , Acuicultura , Bacterias/metabolismo , Biopelículas , Reactores Biológicos/microbiología , Nitritos/metabolismo , Nitrógeno/metabolismo , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología
11.
Front Microbiol ; 13: 837121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572699

RESUMEN

It is critical to exploit technologies for alleviating watermelon continuous cropping obstacle which frequently occurs and results in the limiting production and economic losses of watermelon. This study aimed to explore the effects of slightly acidic electrolyzed water (SAEW) on watermelon continuous cropping obstacles. The results showed that SAEW significantly improved the growth of watermelon seedlings cultivated in continuous cropping soil and caused a mass of changes to the diversity of the soil microbial community. Compared with Con, SAEW decreased the diversity index of bacteria by 2%, 0.48%, and 3.16%, while it increased the diversity index of fungus by 5.68%, 10.78%, and 7.54% in Shannon, Chao1, and ACE index, respectively. Besides, the enrichment level of Fusarium oxysporum f. sp. niveum (FON) was remarkably downregulated by 50.2% at 14 days of SAEW treatment, which could decrease the incidence of Fusarium wilt disease. The wet and dry weights of FON mycelia in the fluid medium were depressed more than 93%, and the number of FON colonies in continuous cropping soil was reduced by 83.56% with SAEW treatment. Additionally, a strong correlation between watermelon, FON, and SAEW was presented by correlation analysis. Furthermore, the content of endogenous reactive oxygen species (ROS) was over quadruply increased by SAEW, which may contribute to the sterilizing effect of SAEW on FON. Taken together, our findings demonstrated that exogenous SAEW could alter the soil microbial diversity and decrease the accumulation of FON, which improved the growth of watermelon seedlings and finally alleviated continuous cropping obstacles of watermelon.

12.
Biosens Bioelectron ; 211: 114377, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35609453

RESUMEN

Since their discovery, CRISPR/Cas systems have been extensively exploited in nucleic acid biosensing. However, the vast majority of contemporary platforms offer only qualitative detection of nucleic acid, and fail to realize ultrasensitive quantitative detection. Herein, we report a digital droplet-based platform (DropCRISPR), which combines loop-mediated isothermal amplification (LAMP) with CRISPR/Cas12a to realize ultrasensitive and quantitative detection of nucleic acids. This is achieved through a novel two-step microfluidic system which combines droplet LAMP with a picoinjector capable of injecting the required CRISPR/Cas12a reagents into each droplet. This method circumvents the temperature incompatibilities of LAMP and CRISPR/Cas12a and avoids mutual interference between amplification reaction and CRISPR detection. Ultrasensitive detection (at fM level) was achieved for a model plasmid containing the invA gene of Salmonella typhimurium (St), with detection down to 102 cfu/mL being achieved in pure bacterial culture. Additionally, we demonstrate that the DropCRISPR platform is capable of detecting St in raw milk samples without additional nucleic acid extraction. The sensitivity and robustness of the DropCRISPR further demonstrates the potential of CRISPR/Cas-based diagnostic platforms, particularly when combined with state-of-the-art microfluidic architectures.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Técnicas Biosensibles/métodos , Sistemas CRISPR-Cas/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , Ácidos Nucleicos/genética , Salmonella typhimurium/genética
13.
Front Med (Lausanne) ; 9: 817957, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280911

RESUMEN

The vaginal microbiota, dominated by Lactobacilli, plays an important role in maintaining women's health. Disturbance of the vaginal microbiota allows infection by various pathogens such as Gardnerella spp. (GS) and related anaerobic bacteria resulting in bacterial vaginosis (BV). At present, the treatment options for BV are extremely limited. Treatment of antibacterial drugs and vaginal acidification are the two primary therapeutic methods. Acid electrolyzed water (AEW) is known to inactivate microorganisms and is considered a medical application in recent years. Studies have found that Lactobacillus acidophilus (LA) probiotics helps to inhibit GS-induced BV. Our study took GS and LA as the research object, which aims to explore AEW as a potential alternative therapy for BV and its underlying mechanisms. We first obtained the pH of AEW (3.71-4.22) close to normal vaginal pH (3.8-4.5) to maintain normal vaginal acidification conditions. Plate counting experiments showed that AEW (pH: 4.07, ORP: 890.67, ACC: 20 ppm) (20 ppm) could better inhibit the viability of GS but had a more negligible effect on LA. Then, we preliminarily explored the possible mechanism of AEW anti-GS using cell biology experiments and transmission electron microscopy. Results showed that the membrane permeability was significantly increased and the integrity of cell membrane was destroyed by AEW in GS than those in LA. AEW also caused protein leakage and cell lysis in GS without affecting LA. Meanwhile, AEW induced a number of reactive oxygen species (ROS) production in GS, with no obvious LA changes. Finally, we found that 20 ppm AEW exhibited excellent antibacterial effect on the vaginal secretions of women diagnosed with BV by Amsel criteria and sialic acid plum method. Taken together, our findings manifest that 20 ppm AEW has an excellent antibacterial effect in GS with less effect on LA, which might be expected to become a potential therapy for BV.

14.
Chemosphere ; 290: 133325, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34922967

RESUMEN

The taste and odor (T&O) problem represented by 2-methylisoborneol (2-MIB) and geosmin (GSM) in water is the multiple undesirable substances in the drinking water and the aquatic industry. In this study, the UV-assisted photoelectrochemical, a prospective advanced oxidation process (AOP), was evaluated for the degradation of 2-MIB and GSM. In contrast to UV photochemical and electrochemical, the degradation ratio of GSM (2-MIB) increase to 96% (95%) in 25 min. The removal ratio and rate depended on reaction time, electrolyte concentration, current density, and water quality parameters (e.g. pH, HCO3-, natural organic matter, and tap water). Among these parameters, a high concentration of electrolyte and acidic solutions could accelerate the rate and increase the ratio, while alkaline conditions and the impurity content had negative effects. Furthermore, the significant role of various reactive species (e.g. HO∙, Cl, ClO, etc) were highlighted by scavenging experiments. Complex free radicals exist was further verified by electron paramagnetic resonance spectroscopy (EPR) experiments. The intermediates were identified and the possible degradation pathways during the UV-assisted photoelectrochemical reactions of both compounds were proposed. Overall, the UV-assisted photoelectrochemical is beneficial to the removal of GSM and 2-MIB in water.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Canfanos , Naftoles/análisis , Odorantes/análisis , Estudios Prospectivos , Contaminantes Químicos del Agua/análisis
15.
Environ Pollut ; 291: 118152, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34740287

RESUMEN

The operation of the equipment in industrial recirculating aquaculture systems (RAS) affects the underwater soundscape of aquaculture tanks where fishes live. This study evaluated the influence of commercial industrial RAS noise on the growth, physiology, and behavior of juvenile largemouth bass (Micropterus salmoides). In this study, two experimental groups, the RAS noise group (115 dB re 1 µPa RMS) and the ambient group (69 dB re 1 µPa RMS), were studied. The water quality and feeding regime for each group were kept the same during the 60-day experiment. Results showed that there was no significant difference in the average daily feed intake of the fish between the two treatments, while the rate of weight gain of the ambient group (755.27 ± 65.62%) was significantly higher than that of the noise group (337.66 ± 88.01%). In addition, the RAS environmental noise also had an adverse effect on the anti-oxidation and immune systems of the fish based on results of analysis of blood, liver, and intestinal samples. Moreover, environmental noise affected the swimming behavior of the fish school. The mean angle and distance between the focal fish and its nearest neighbor fish in RAS noise group were 33.3° and 92.1 mm, respectively, which were larger than those of the ambient group with 24.4° and 89.5 mm, respectively. From the above results, RAS noise did influence the welfare of largemouth bass, and the soundscape in RAS hence should be managed in real production.


Asunto(s)
Lubina , Animales , Acuicultura , Intestinos , Hígado/metabolismo , Oxidación-Reducción
16.
J Environ Manage ; 291: 112724, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33962286

RESUMEN

This research investigated two proposed modified biofilm carriers' performances in treating recirculating aquaculture systems (RAS) wastewater under different salinities (12‰, 26‰, and 35‰) for about 92 days. Three moving bed biofilm reactors (MBBRs; R1, R2, and R3) were filled with unmodified novel sponge biocarriers (SB) served as a control, modified novel SB with ferrous oxalate (C2FeO4@SB), and modified novel SB with combined ferrous oxalate and activated carbon (C2FeO4-AC@SB), respectively. Under the highest saline condition, a significantly higher ammonia removal efficiency of 98.86 ± 0.7% (p ˃ 0.05) was obtained in R3, whereas R2 and R1 yielded 95.18 ± 2.8% and 91.66 ± 1.5%, respectively. Microbial analysis showed that Vibrio, Ruegeria, Formosa, Thalassospira, and Denitromonas were predominant genera, strictly halophilic heterotrophic nitrifying bacteria involved in nitrogen removal. In conclusion, the synergistic effects of novel sponge, C2FeO4 and AC accelerated biofilm formations and stability, subsequently enhanced the removal of ammonia from the mariculture RAS wastewater by the C2FeO4-AC@SB carriers in R3.


Asunto(s)
Microbiota , Purificación del Agua , Biopelículas , Reactores Biológicos , Nitrificación , Taiwán , Aguas Residuales/análisis
18.
Proc Biol Sci ; 287(1938): 20202172, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33171081

RESUMEN

Foraging animals must balance benefits of food acquisition with costs induced by a post-prandial reduction in performance. Eating to satiation can lead to a reduction in locomotor and escape performance, which increases risk should a threat subsequently arises, but limiting feeding behaviour may be maladaptive if food intake is unnecessarily reduced in the prediction of threats that do not arise. The efficacy of the trade-off between continued and interrupted feeding therefore relies on information about the future risk, which is imperfect. Here, we find that black carp (Mylopharyngodon piceus) can balance this trade-off using an a posteriori strategy; by eating to satiation but regurgitating already ingested food when a threat arises. While degrees of satiation (DS) equal to or greater than 60% reduce elements of escape performance (turning angle, angular velocity, distance moved, linear velocity), at 40% DS or lower, performance in these tasks approaches levels comparable to that at 0% satiation. After experiencing a chasing event, we find that fish are able to regurgitate already ingested food, thereby changing the amount of food in their gastrointestinal tract to consistent levels that maintain high escape performance. Remarkably, regurgitation results in degrees of satiation between 40 and 60% DS, regardless of whether they had previously fed to 40, 60 or 100% DS. Using this response, fish are able to maximize food intake, but regurgitate extra food to maintain escape performance when they encounter a threat. This novel strategy may be effective for continual grazers and species with imperfect information about the level of threat in their environment.


Asunto(s)
Carpas/fisiología , Animales , Conducta Animal , Cyprinidae , Ingestión de Alimentos , Conducta Alimentaria , Alimentos , Agua Dulce , Periodo Posprandial , Saciedad
19.
Fish Shellfish Immunol ; 107(Pt A): 118-128, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32961293

RESUMEN

Biofloc technology is increasingly becoming the most promising aquaculture tool especially in places where water is scarce and the land is very expensive. The dynamics of water quality, as well as plankton and microbial abundance, are collectively necessary for successful fish farming. The prospective use of jaggery as a potential carbon source and its influence on water quality, growth performance, innate immunity, serum bactericidal capacity, and disease resistance to Aeromonas hydrophila was investigated in Oreochromis niloticus. A completely randomized design was used in triplicates, where the control group was reared in a water system with no carbon source, while T1, T2, and T3 groups were raised in biofloc systems at C:N ratios of C:N12, C:N15, and C:N20, respectively. Water specimens were collected daily and fortnightly, while blood, serum, and head kidneys were collected at 75 days of experimental period for further analysis. TAN, nitrite, and ammonia values were considerably reduced, while the TSS values elevated significantly in all treated groups compared to the control. Jaggery-based biofloc system (JB-BFT) has a pronounced effect on hematological and growth performance parameters rather than control. Similarly, serum antioxidants, lysozyme, protease, antiprotease and bactericidal capacity were significantly increased (p < 0.05) in the treated groups in a dose-dependent manner. LYZ, TNF-α, and IL-1ß genes were upregulated in proportion to C:N ratios with the highest fold in C:N20. Furthermore, fish treated with JB-BFT presented lower cumulative mortalities and better relative levels of production (RLP) after experimental challenge with A. hydrophila compared to control. In conclusion, JB-BFT has a robust influence on Nile tilapia (O. niloticus) innate immunity through favorable innovation of various immune-cells and enzymes as well as upregulating the expression levels of immune-related genes. This study offers jaggery as a new carbon source with unique properties that satisfy all considerations of biofloc technology in an eco-friendly manner.


Asunto(s)
Carbono/análisis , Cíclidos/inmunología , Resistencia a la Enfermedad , Enfermedades de los Peces/inmunología , Nitrógeno/análisis , Extractos Vegetales/administración & dosificación , Calidad del Agua , Aeromonas hydrophila/fisiología , Animales , Acuicultura/instrumentación , Cíclidos/genética , Cíclidos/crecimiento & desarrollo , Resistencia a la Enfermedad/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Tecnología
20.
J Environ Manage ; 275: 111264, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32854050

RESUMEN

In this study, a novel sponge biocarriers (SB) in moving bed bioreactor (MBBR) treating recirculating aquaculture systems wastewater was evaluated for the first time. Two lab-scale MBBRs were operated simultaneously for 116 days under various hydraulic retention times (HRTs). The reactors R1 and R2 were filled with K5 plastic carriers and SB, respectively. From the results, at an optimum HRT of 6 h, ammonia removal efficiency and nitrification rate were 86.67 ± 2.4% and 1.43 mg/L.h for the R1 and, 91.65 ± 1.3% and 1.52 mg/L.h for the R2, respectively. The microbial community analysis showed that the predominant genera in the nitrifying community were Nitrosomonas (AOB) and Nitrospira (NOB) in co-existence with heterotrophic genera Hyphomicrobium, Mesorhizobium, Zhizhongheella, and Klebsiella spp. Modified Stover-Kincannon model examined the ammonia removal kinetics, and the values of kinetic parameters obtained were Umax: 0.909 and 1.111 g/L.d and KB: 0.929 and, 1.108 g/L.d for the R1 and R2, respectively. The correlation coefficients (R2) of the MBBRs were higher than 0.98, indicating that the model adequately described the experimental data. Overall, MBBR, filled with the proposed novel SB operated at 6 h HRT, can achieve the highest nitrification performance and increase the diversity of the functional microbial communities.


Asunto(s)
Microbiota , Aguas Residuales , Amoníaco , Acuicultura , Biopelículas , Reactores Biológicos , Cinética , Nitrificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...