Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Control Release ; 368: 650-662, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490374

RESUMEN

Glioblastoma (GBM), deep in the brain, is more challenging to diagnose and treat than other tumors. Such challenges have blocked the development of high-impact therapeutic approaches that combine reliable diagnosis with targeted therapy. Herein, effective cyanine dyes (IRLy) with the near-infrared two region (NIR-II) adsorption and aggregation-induced emission (AIE) have been developed via an "extended conjugation & molecular rotor" strategy for multimodal imaging and phototherapy of deep orthotopic GBM. IRLy was synthesized successfully through a rational molecular rotor modification with stronger penetration, higher signal-to-noise ratio, and a high photothermal conversion efficiency (PCE) up to ∼60%, which can achieve efficient NIR-II photo-response. The multifunctional nanoparticles (Tf-IRLy NPs) were further fabricated to cross the blood-brain barrier (BBB) introducing transferrin (Tf) as a targeting ligand. Tf-IRLy NPs showed high biosafety and good tumor enrichment for GBM in vitro and in vivo, and thus enabled accurate, efficient, and less invasive NIR-II multimodal imaging and photothermal therapy. This versatile Tf-IRLy nanosystem can provide a reference for the efficient, precise and low-invasive multi-synergistic brain targeted photo-theranostics. In addition, the "extended conjugation & molecular rotor" strategy can be used to guide the design of other photothermal agents.


Asunto(s)
Glioblastoma , Nanopartículas , Neoplasias , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Fototerapia/métodos , Encéfalo , Barrera Hematoencefálica , Colorantes , Nanomedicina Teranóstica/métodos , Nanopartículas/uso terapéutico , Línea Celular Tumoral
2.
J Ethnopharmacol ; 319(Pt 3): 117355, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37890805

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zhi-Zi-Hou-Po decoction (ZZHP), a traditional Chinese medicine (TCM) classic recipe, has been extensively applied for the remedy of depression. However, the underlying mechanism of ZZHP hasn't been fully elucidated and it needs to be further clarified. AIM OF STUDY: The aim of the study is to uncover the mechanisms of ZZHP's effect on depression. MATERIALS AND METHODS: C57BL/6 mice were employed to establish Chronic Unpredictable Mild Stress (CUMS) models. Behavioral tests were conducted for evaluating the antidepressant effects of ZZHP. Then, the monoamine neurotransmitters in the hippocampus through High Performance Liquid Chromatography Electrochemical Detection (HPLC-ECD) were utilized to assess the effect of ZZHP on the maintenance of monoamine neurotransmitter homeostasis. Immunofluorescence staining and Golgi staining were detected to analyze the effects of ZZHP on neuroplasticity in the hippocampus. Western Blot (WB) was utilized to examine the effects of ZZHP on BDNF/TrkB/CREB pathways. Finally, behavioral tests, WB and immunofluorescence staining were repeated after TrkB receptor antagonist was added to further confirm the underlying mechanism. RESULTS: Our results shown that ZZHP attenuated depressive-like symptoms in CUMS mice. Moreover, ZZHP remarkably reversed the reduction and maintained the homeostasis of monoamine neurotransmitters in the hippocampus. Simultaneously, ZZHP protected neuronal synaptic plasticity and promoted hippocampal neurogenesis. Furthermore, ZZHP stimulated the BDNF/TrkB/CREB pathway in the hippocampus. The addition of TrkB receptor antagonist inhibited the antidepressant effects of ZZHP, suggesting that ZZHP could not work without triggering the BDNF/TrkB/CREB pathway. CONCLUSION: This study demonstrates that ZZHP can alleviate depressive-like behavior and promote hippocampal neurogenesis in CUMS mice via activating the BDNF/TrkB/CREB pathway.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor trkB/metabolismo , Ratones Endogámicos C57BL , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Hipocampo , Neurogénesis , Neurotransmisores/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad
3.
ACS Appl Mater Interfaces ; 15(46): 53217-53227, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37943099

RESUMEN

Bone tumor patients often encounter challenges associated with cancer cell residues and bone defects postoperation. To address this, there is an urgent need to develop a material that can enable tumor treatment and promote bone repair. Metal-organic frameworks (MOFs) have attracted the interest of many researchers due to their special porous structure, which has great potential in regenerative medicine and drug delivery. However, few studies explore MOFs with dual antitumor and bone regeneration properties. In this study, we investigated amino-functionalized zirconium-based MOF nanoparticles (UiO-66-NH2 NPs) as bifunctional nanomaterials for bone tumor treatment and osteogenesis promotion. UiO-66-NH2 NPs loading with doxorubicin (DOX) (DOX@UiO-66-NH2 NPs) showed good antitumor efficacy both in vitro and in vivo. Additionally, DOX@UiO-66-NH2 NPs significantly reduced lung injury compared to free DOX in vivo. Interestingly, the internalized UiO-66-NH2 NPs notably promoted the osteogenic differentiation of preosteoblasts. RNA-sequencing data revealed that PI3K-Akt signaling pathways or MAPK signaling pathways might be involved in this enhanced osteogenesis. Overall, UiO-66-NH2 NPs exhibit dual functionality in tumor treatment and bone repair, making them highly promising as a bifunctional material with broad application prospects.


Asunto(s)
Neoplasias Óseas , Estructuras Metalorgánicas , Nanopartículas , Compuestos Organometálicos , Humanos , Estructuras Metalorgánicas/química , Circonio/química , Osteogénesis , Fosfatidilinositol 3-Quinasas , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico
4.
Small ; 19(38): e2301003, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37211708

RESUMEN

Bone is one of the prone metastatic sites of patients with advanced breast cancer. The "vicious cycle" between osteoclasts and breast cancer cells plays an essential role in osteolytic bone metastasis from breast cancer. In order to inhibit bone metastasis from breast cancer, NIR-II photoresponsive bone-targeting nanosystems (CuP@PPy-ZOL NPs) are designed and synthesized. CuP@PPy-ZOL NPs can trigger the photothermal-enhanced Fenton response and photodynamic effect to enhance the photothermal treatment (PTT) effect and thus achieve synergistic anti-tumor effect. Meanwhile, they exhibit a photothermal enhanced ability to inhibit osteoclast differentiation and promote osteoblast differentiation, which reshaped the bone microenvironment. CuP@PPy-ZOL NPs effectively inhibited the proliferation of tumor cells and bone resorption in the in vitro 3D bone metastases model of breast cancer. In a mouse model of breast cancer bone metastasis, CuP@PPy-ZOL NPs combined with PTT with NIR-II significantly inhibited the tumor growth of breast cancer bone metastases and osteolysis while promoting bone repair to achieve the reversal of osteolytic breast cancer bone metastases. Furthermore, the potential biological mechanisms of synergistic treatment are identified by conditioned culture experiments and mRNA transcriptome analysis. The design of this nanosystem provides a promising strategy for treating osteolytic bone metastases.


Asunto(s)
Neoplasias Óseas , Osteólisis , Animales , Ratones , Terapia Fototérmica , Microambiente Tumoral , Huesos/patología , Neoplasias Óseas/terapia , Neoplasias Óseas/patología , Osteoclastos , Osteólisis/terapia , Osteólisis/patología , Línea Celular Tumoral
5.
Bioorg Chem ; 132: 106349, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36716644

RESUMEN

Photosensitizers play a key role in bioimaging and photodynamic therapy (PDT) of cancer. However, conventional photosensitizers usually do not achieve the desired efficacy in PDT due to their poor photostability, targeting ability, and responsiveness. Herein, we designed a series of photosensitizers with aggregation-induced emission (AIE) effect using benzothiazole- triphenylamine (BZT-triphenylamine) as the parent nucleus. The synthesized compound SIN ((E)-2-(4-(diphenylamino)styryl)-3-(4-iodobutyl)benzo[d]thiazol-3-ium) exhibits good biocompatibility, photostability, and bright emission in the near-infrared range (600-800 nm). The fluorescence emission intensity is responsive to viscosity, with significant fluorescence enhancement (48 times) and high fluorescence quantum yield (4.45 %) at high viscosity. Moreover, SIN has particular lysosome targeting properties with a Pearson correlation coefficient (PCC) of 0.97 and has good 1O2 generation ability under white light irradiation, especially in a weak acidic environment. Thus, SIN can realize good bioimaging ability and photodynamic therapeutic efficacy under the highly viscous and weakly acidic environment of lysosomes in the tumor cells. This study indicates that SIN has potential as a multifunctional organic photosensitizer for bioimaging and PDT of tumor.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Luz , Lisosomas
6.
Mater Today Bio ; 15: 100318, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35734197

RESUMEN

Bone tumor patients often face the problems with cancer cell residues and bone defects after the operation. Therefore, researchers have developed many bifunctional scaffolds with both tumor treatment and bone repair functions. Therapeutic agents are usually combined with bioactive scaffolds to achieve the "bifunctional". However, the synergistic effect of bifunctional scaffolds on tumor therapy and bone repair, as well as the interplay between therapeutic agents and scaffold materials in bifunctional scaffolds, have not been emphasized and discussed. This review proposes a promising design scheme for bifunctional scaffolds: the synergistic effect and interplay between the therapeutic agents and scaffold materials. This review summarizes the latest research progress in bifunctional scaffolds for therapeutic applications and regeneration. In particular, it summarizes the role of tumor therapeutic agents in bone regeneration and the role of scaffold materials in tumor treatment. Finally, a perspective on the future development of bifunctional scaffolds for tumor therapy and bone regeneration is discussed.

7.
Adv Healthc Mater ; 11(12): e2200044, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35192244

RESUMEN

Metal ions are of widespread interest owing to their brilliant biomedical functions. However, a simple and universal nanoplatform designed for assembling a range of functional metal ions has not been explored. In this study, a concept of polyethylene glycol (PEG)-mediated transport of metal ions is proposed. 31 types of PEG-metal hybrid nanoparticles (P-MNPs) are successfully synthesized through anionic ring-opening polymerization (ROP), "thiol-ene" click reaction, and subsequent incorporation with multiple metal ions. Compared with other methods, the facile method proposed in this study can provide a feasible approach to design MNPs (mostly <200 nm) containing different metal ions and thus to explore their potential for cancer theranostics. As a proof-of-concept demonstration, four types P-MNPs, i.e., PEG-metal hybrid copper nanoparticles (PEG-Cu NPs), ruthenium nanoparticles (PEG-Ru NPs), and manganese nanoparticles (PEG-Mn NPs) or gadolinium nanoparticles (PEG-Gd NPs), are proven to be tailored for chemodynamic therapy, photothermal therapy, and magnetic resonance imaging of tumors, respectively. Overall, this study provides several metal ions-based nanomaterials with versatile functions for broad applications in cancer theranostics. Furthermore, it offers a promising tool that can be utilized for processing other metal-based nanoparticles and exploring their potential in the biomedical field.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Humanos , Iones , Metales , Nanopartículas/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Polietilenglicoles , Medicina de Precisión
8.
Zhonghua Yu Fang Yi Xue Za Zhi ; 42(12): 911-8, 2008 Dec.
Artículo en Chino | MEDLINE | ID: mdl-19141227

RESUMEN

OBJECTIVE: To establish the methods of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) compounds determination by isotope dilution HRGC/HRMS simultaneously in human placenta tissue from mothers, and assess the human exposure risk to dioxins and PBDEs in study. METHODS: Concentrations of 17 PCDD/Fs and 12 dioxin-like PCBs as well as 7 PBDEs were measured in human placenta tissue samples by isotope dilution HRGC/HRMS. SigmaTEQ (PCDD + PCDFs + PCBs) concentration using WHO-TEF factor and PBDEs concentration was calculated respectively. Risk assessment of mother exposure to dioxins and PBDEs was evaluated. RESULTS: Median of SigmaTEQ (PCDD + PCDFs + PCBs) concentration for six samples was 18.15 WHO-TEQ pg/g lipid, ranging from 5.14 - 67.01 WHO-TEQ pg/g lipid. Although the median of SigmaTEQ (PCDD + PCDFs + PCBs) was lower than that of human blood of EU and Japan, and close to that of Korea and Taiwan non-exposure as reported in the literatures, the highest SigmaTEQ (PCDD + PCDFs + PCBs) concentration of placenta sample exceeded the value of high dioxins exposure area subjects in Taiwan. The dominant contributor congener for WHO-TEQ were 2, 3, 4, 7, 8-PeCDF, 1, 2, 3, 7, 8-PeCDD, PCB126, totally accounted for 65 percent of SigmaWHO-TEQ. Median and average of PBDE concentration for six samples were 2.73 ng/g lipid and 7.17 ng/g lipid, respectively, ranging from 0.95 - 25.99 ng/g lipid. BDE47 was the dominant contributor congener for the total concentration, accounted for 35 percent. CONCLUSION: The methods of PCDD/Fs, PCBs and PBDEs compounds determined by isotope dilution HRGC/HRMS simultaneously in human placenta tissue from mothers were established successfully, and the human exposure risk to PCDD/Fs, PCBs and PBDEs should be surveyed for the donor with the highest SigmaTEQ (PCDD + PCDFs + PCBs) and PBDEs concentration of placenta sample in the future.


Asunto(s)
Éteres Difenilos Halogenados/análisis , Placenta/química , Bifenilos Policlorados/análisis , Dibenzodioxinas Policloradas/análogos & derivados , Benzofuranos/análisis , Femenino , Humanos , Exposición Materna , Dibenzodioxinas Policloradas/análisis , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...