Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2402786, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966898

RESUMEN

Quasi-2D perovskites exhibit impressive optoelectronic properties and hold significant promise for future light-emitting devices. However, the efficiency of perovskite light-emitting diodes (PeLEDs) is seriously limited by defect-induced nonradiative recombination and imbalanced charge injection. Here, the defect states are passivated and charge injection balance is effectively improved by introducing the additive cyclohexanemethylammonium (CHMA) to bromide-based Dion-Jacobson (D-J) structure quasi-2D perovskite emission layer. CHMA participates in the crystallization of perovskite, leading to high quality film composed of compact and well-contacted grains with enhanced hole transportation and less defects. As a result, the corresponding PeLEDs exhibit stable pure blue emission at 466 nm with a maximum external quantum efficiency (EQE) of 9.22%. According to current knowledge, this represents the highest EQE reported for pure-blue PeLEDs based on quasi-2D bromide perovskite thin films. These findings underscore the potential of quasi-2D perovskites for advanced light-emitting devices and pave the way for further advancements in PeLEDs.

2.
Fundam Res ; 4(1): 158-166, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38933832

RESUMEN

Artificial vision is crucial for most artificial intelligence applications. Conventional artificial visual systems have been facing challenges in terms of real-time information processing due to the physical separation of sensors, memories, and processors, which results in the production of a large amount of redundant data as well as the data conversion and transfer between these three components consuming most of the time and energy. Emergent optoelectronic memristors with the ability to realize integrated sensing-computing-memory (ISCM) are key candidates for solving such challenges and therefore attract increasing attention. At present, the memristive ISCM devices can only perform primary-level computing with external light signals due to the fact that only monotonic increase of memconductance upon light irradiation is achieved in most of these devices. Here, we propose an all-optically controlled memristive ISCM device based on a simple structure of Au/ZnO/Pt with the ZnO thin film sputtered at pure Ar atmosphere. This device can perform advanced computing tasks such as nonvolatile neuromorphic computing and complete Boolean logic functions only by light irradiation, owing to its ability to reversibly tune the memconductance with light. Moreover, the device shows excellent operation stability ascribed to a purely electronic memconductance tuning mechanism. Hence, this study is an important step towards the next generation of artificial visual systems.

3.
ChemSusChem ; : e202400829, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884174

RESUMEN

Ferrocene (Fc) and Fc derivatives have gained popularity in recent years due to their unique structure and characteristics. Among Fc's diverse performances, photothermal conversion, as a primary source of energy conversion, has sparked substantial study attention. This review summaries Fc and Fc derivatives with photothermal characteristics, as well as their applications developed recently. First, methods for the synthesis of Fc-based materials are systematically discussed. Then, the photothermal conversion mechanism based on nonradiative relaxation is summarized. Furthermore, the most recent advances in Fc-based materials in photothermal applications are described, including photothermal degradation, photothermal antibacterial, photothermal therapies, photothermal catalysis, solar-driven water production, and photothermal CO2 separation. Finally, a summary and insights on the photothermal application of Fc-based materials are provided. This paper seeks to provide researchers with a better knowledge of photothermal behavior while also highlighting the potential of Fc and its derivatives in photothermal fields.

4.
ACS Nano ; 18(25): 16236-16247, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38868857

RESUMEN

Retina-inspired visual sensors play a crucial role in the realization of neuromorphic visual systems. Nevertheless, significant obstacles persist in the pursuit of achieving bidirectional synaptic behavior and attaining high performance in the context of photostimulation. In this study, we propose a reconfigurable all-optical controlled synaptic device based on the IGZO/SnO/SnS heterostructure, which integrates sensing, storage and processing functions. Relying on the simple heterojunction stack structure and the role of energy band engineering, synaptic excitatory and inhibitory behaviors can be observed under the light stimulation of ultraviolet (266 nm) and visible light (405, 520 and 658 nm) without additional voltage modulation. In particular, junction field-effect transistors based on the IGZO/SnO/SnS heterostructure were fabricated to elucidate the underlying bidirectional photoresponse mechanism. In addition to optical signal processing, an artificial neural network simulator based on the optoelectrical synapse was trained and recognized handwritten numerals with a recognition rate of 91%. Furthermore, we prepared an 8 × 8 optoelectrical synaptic array and successfully demonstrated the process of perception and memory for image recognition in the human brain, as well as simulated the situation of damage to the retina by ultraviolet light. This work provides an effective strategy for the development of high-performance all-optical controlled optoelectronic synapses and a practical approach to the design of multifunctional artificial neural vision systems.

5.
Langmuir ; 40(23): 12097-12106, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38814133

RESUMEN

Antimony sulfide (Sb2S3) has been recognized as a catalytic material for splitting water by solar energy because of its suitable narrow band gap, high absorption coefficient, and abundance of elements. However, many deep-level defects in Sb2S3 result in a significant recombination of photoexcited electron-hole pairs, weakening its photoelectrochemical performance. Here, by using a simple hydrothermal and spin-coating method, we fabricated a step-scheme heterojunction of Sb2S3/α-Fe2O3 to improve the photoelectrochemical performance of pure Sb2S3. Our Sb2S3/α-Fe2O3 photoanode has a photocurrent density of 1.18 mA/cm2 at 1.23 V vs reversible hydrogen electrode, 1.39 times higher than that of Sb2S3 (0.84 mA/cm2). In addition, our heterojunction has a lower onset potential, a higher absorbance intensity, a higher incident photon-to-current conversion efficiency, a higher applied bias photon-to-current efficiency, and a lower charge transfer resistance compared to pure Sb2S3. Based on ultraviolet photoelectron spectroscopy, we constructed a step-scheme band structure of Sb2S3/α-Fe2O3 to explain its photoelectrochemical enhancement. This work offers a promising strategy to optimize the performance of Sb2S3 photoelectrodes for solar-driven photoelectrochemical water splitting.

6.
Adv Mater ; : e2404640, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775475

RESUMEN

Cathode materials of sodium-based batteries with high specific capacity and fast charge-discharge mode, as well as ultralong reversible cycles at wide applied temperatures, are essential for future development of advanced energy storage system. Developing transition metal selenides with intercalation features provides a new strategy for realizing the above cathode materials. Herein, this work reports a storage mechanism of sodium ion in hexagonal CuSe (h-CuSe) based on the density functional theory (DFT) guidance. This work reveals that the two-dimensional ion intercalation triggers localized redox reaction in the h-CuSe bulk phase, termed intercalation-induced localized conversion (ILC) mechanism, to stabilize the sodium storage structure by forming localized Cu7Se4 transition phase and adjusting the near-edge coordination state of the Cu sites to achieve high reversible capacity and ultra-long cycling life, while allowing rapid charge-discharge cycling over a wide temperature range.

7.
Nat Nanotechnol ; 19(5): 638-645, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649747

RESUMEN

Perovskite quantum dots (QDs) are promising for various photonic applications due to their high colour purity, tunable optoelectronic properties and excellent solution processability. Surface features impact their optoelectronic properties, and surface defects remain a major obstacle to progress. Here we develop a strategy utilizing diisooctylphosphinic acid-mediated synthesis combined with hydriodic acid-etching-driven nanosurface reconstruction to stabilize CsPbI3 QDs. Diisooctylphosphinic acid strongly adsorbs to the QDs and increases the formation energy of halide vacancies, enabling nanosurface reconstruction. The QD film with nanosurface reconstruction shows enhanced phase stability, improved photoluminescence endurance under thermal stress and electric field conditions, and a higher activation energy for ion migration. Consequently, we demonstrate perovskite light-emitting diodes (LEDs) that feature an electroluminescence peak at 644 nm. These LEDs achieve an external quantum efficiency of 28.5% and an operational half-lifetime surpassing 30 h at an initial luminance of 100 cd m-2, marking a tenfold improvement over previously published studies. The integration of these high-performance LEDs with specifically designed thin-film transistor circuits enables the demonstration of solution-processed active-matrix perovskite displays that show a peak external quantum efficiency of 23.6% at a display brightness of 300 cd m-2. This work showcases nanosurface reconstruction as a pivotal pathway towards high-performance QD-based optoelectronic devices.

8.
Light Sci Appl ; 13(1): 82, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38584197

RESUMEN

Broadband electroluminescence based on environment-friendly emitters is promising for healthy lighting yet remains an unprecedented challenge to progress. The copper halide-based emitters are competitive candidates for broadband emission, but their high-performance electroluminescence shows inadequate broad emission bandwidth of less than 90 nm. Here, we demonstrate efficient ultra-broadband electroluminescence from a copper halide (CuI) nanocluster single emitter prepared by a one-step solution synthesis-deposition process, through dedicated design of ligands and subtle selection of solvents. The CuI nanocluster exhibits high rigidity in the excitation state as well as dual-emissive modes of phosphorescence and temperature-activated delayed fluorescence, enabling the uniform cluster-composed film to show excellent stability and high photoluminescent efficiency. In consequence, ultra-broadband light-emitting diodes (LEDs) present nearly identical performance in an inert or air atmosphere without encapsulation and outstanding high-temperature operation performance, reaching an emission full width at half maximum (FWHM) of ~120 nm, a peak external quantum efficiency of 13%, a record maximum luminance of ~50,000 cd m-2, and an operating half-lifetime of 137 h at 100 cd m-2. The results highlight the potential of copper halide nanoclusters for next-generation healthy lighting.

9.
ACS Nano ; 18(15): 10609-10617, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38569090

RESUMEN

Controlling interfacial reactions is critical for zinc oxide (ZnO)-based inverted perovskite light-emitting diodes (PeLEDs), boosting the external quantum efficiency (EQE) of the near-infrared device to above 20%. However, violent interfacial reactions between the bromine-based perovskites and ZnO-based films severely limit the performance of inverted green PeLEDs, whose efficiency and stability lag far behind those of their near-infrared counterparts. Here, a controllable interfacial amidation between the bromine-based perovskites and magnesium-doped ZnO (ZnMgO) film utilizing caprylyl sulfobetaine (SFB) is realized. The SFB molecules strongly interact with formamidinium bromide, decelerating the amidation reaction between formamidinium and carboxylate groups on the ZnMgO film, thus regulating the crystallization of FAPbBr3. Combined with the passivation of benzylamine, a FAPbBr3 bulk film directly deposited on a ZnMgO substrate with single-crystal characteristics is obtained, exhibiting a high photoluminescence quantum yield of above 80%. The resultant PeLEDs demonstrate a peak EQE of exceeding 20% at a high luminance of 120,000 cd m-2 and a half lifetime of 26 min at 11,000 cd m-2, representing the state-of-the-art inverted green electroluminescence. This work resolves the crucial issues of violent interfacial reactions and provides a strategy toward inverted green PeLEDs with outstanding performance.

10.
ACS Appl Mater Interfaces ; 16(15): 19742-19750, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38563423

RESUMEN

Perovskites have great potential for optoelectronic applications due to their high photoluminescence quantum yield, large absorption coefficient, great defect tolerance, and adjustable band gap. Perovskite heterostructures may further enhance the performance of optoelectronic devices. So far, however, most of perovskite heterostructures are fabricated by mechanical stacking or spin coating, which could introduce a large number of defects or impurities at the heterointerface owing to the random stacking process. Herein, we report the epitaxial growth of CsPbBr3 pyramids/CdS nanobelt heterostructures via a 2-step vapor deposition route. The CsPbBr3 triangular pyramids are well aligned on the surface of CdS nanobelts with the epitaxial relationships of (0-22)CsPbBr3||(1-20)CdS and (-211)CsPbBr3||(002)CdS. Time-resolved photoluminescence results reveal that effective charge transfer occurred at the heterointerface, which can be attributed to the type-II band arrangement. Theoretical simulations reveal that the unique CsPbBr3 pyramids/CdS nanobelt structure facilitates diminishing the reflection losses and enhancing the light absorption. The photodetector based on these CsPbBr3 pyramids/CdS nanobelt heterostructures exhibited an ultrahigh photoswitching ratio of 2.14 × 105, a high responsivity up to 4.07 × 104 A/W, a high detectivity reaching 1.36 × 1013 Jones, fast photoresponses (τrise = 472 µs and τdecay = 894 µs), low dark current, and suppressed hysteresis.

11.
Nano Lett ; 24(12): 3750-3758, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38488747

RESUMEN

Semiconductor planar nanowire arrays (PNAs) are essential for achieving large-scale device integration. Direct heteroepitaxy of PNAs on a flat substrate is constrained by the mismatch in crystalline symmetry and lattice parameters between the substrate and epitaxial nanowires. This study presents a novel approach termed "self-competitive growth" for heteroepitaxy of CsPbBr3 PNAs on mica. The key to inducing the self-competitive growth of CsPbBr3 PNAs on mica involves restricting the nucleation of CsPbBr3 nanowires in a high-adsorption region, which is accomplished by overlaying graphite sheets on the mica surface. Theoretical calculations and experimental results demonstrate that CsPbBr3 nanowires oriented perpendicular to the boundary of the high-adsorption area exhibit greater competitiveness in intercepting the growth of nanowires in the other two directions, resulting in PNAs with a consistent orientation. Moreover, these PNAs exhibit low-threshold and stable amplified spontaneous emission under one-, two-, and three-photon excitation, indicating their potential for an integrated laser array.

12.
ACS Nano ; 18(12): 8673-8682, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38471123

RESUMEN

Developing green perovskite light-emitting diodes (PeLEDs) with a high external quantum efficiency (EQE) and low efficiency roll-off at high brightness remains a critical challenge. Nanostructured emitter-based devices have shown high efficiency but restricted ascending luminance at high current densities, while devices based on large-sized crystals exhibit low efficiency roll-off but face great challenges to high efficiency. Herein, we develop an all-inorganic device architecture combined with utilizing tens-of-nanometers-sized CsPbBr3 (TNS-CsPbBr3) emitters in a carrier-confined heterostructure to realize green PeLEDs that exhibit high EQEs and low efficiency roll-off. A typical type-I heterojunction containing TNS-CsPbBr3 crystals and wide-bandgap Cs4PbBr6 within a grain is formed by carefully controlling the precursor ratio. These heterostructured TNS-CsPbBr3 emitters simultaneously enhance carrier confinement and retain low Auger recombination under a large injected carrier density. Benefiting from a simple device architecture consisting of an emissive layer and an oxide electron-transporting layer, the PeLEDs exhibit a sub-bandgap turn-on voltage of 2.0 V and steeply rising luminance. In consequence, we achieved green PeLEDs demonstrating a peak EQE of 17.0% at the brightness of 36,000 cd m-2, and the EQE remained at 15.7% and 12.6% at the brightness of 100,000 and 200,000 cd m-2, respectively. In addition, our results underscore the role of interface degradation during device operation as a factor in device failure.

13.
Langmuir ; 40(10): 5348-5359, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408346

RESUMEN

The challenge of removing trace levels of heavy metal ions, particularly uranium, from wastewater is a critical concern in environmental management. Uranium, a key element in long-term nuclear power generation, often poses significant extraction difficulties in wastewater due to its low concentration, interference from other ions, and the complexity of aquatic ecosystems. This study introduces an anodic electrodeposited hierarchical porous 2D metal-organic framework (MOF) Cu-BDC-NH2@graphene oxide (GO) membrane for effective uranium extraction by mimicking the function of the superb-uranyl-binding protein. This membrane is characterized by its hierarchical pillared-layer structures resulting from the controlled orientation of Cu-BDC-NH2 MOFs within the laminated GO layers during the electrodeposition process. The integration of amino groups from 2D Cu-BDC-NH2 and carboxylate groups from GO enables a high affinity to uranyl ions, achieving an unprecedented uranium adsorption capacity of 1078.4 mg/g and outstanding selectivity. Our findings not only demonstrate a breakthrough in uranium extraction technology but also pave the way for advancements in water purification and sustainable energy development, proposing a practical and efficient strategy for creating orientation-tunable 2D MOFs@GO membranes tailored for high-efficiency uranium extraction.

14.
ACS Appl Mater Interfaces ; 16(7): 9126-9136, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324454

RESUMEN

Gas sensors for acetone detection have received considerable attention because acetone has a significant influence on both the environment and human health, e.g., it is flammable and toxic and may be related to blood glucose levels. However, achieving high sensitivity and selectivity at low concentrations is still a great challenge to date. Here, we report a unique chemiresistive gas sensor for acetone detection, which is composed of In2O3 nanofibers loaded with a porous Co-based zeolitic imidazolate framework (ZIF-67)-derived Co3O4 cage prepared by simple electrospinning and solvothermal methods. The ZIF-67-derived oxide cage/nanofiber Co3O4/In2O3 heterostructure has abundant reversible active adsorption/reaction sites and a type-I heterojunction, resulting in an ultrasensitive response of 954-50 ppm acetone at 300 °C. In addition, it demonstrates a low detection limit of 18.8 ppb, a fast response time of 4 s, good selectivity and repeatability, acceptable humidity interference, and long-term stability. With such excellent sensing performance to acetone, our chemiresistive gas sensor could be potentially applied for environmental monitoring and early diagnosis of diabetes.

15.
Langmuir ; 40(8): 4424-4433, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38368593

RESUMEN

To develop versatile photocatalysts for efficient degradation of distinct organic pollutants in water is a continuous pursuit in environment remediation. Herein, we directly oxidize Ti3C2 MXene with hydrogen peroxide to produce C-doped anatase TiO2 nanowires with aggregates maintaining a layered architecture of the MXene. The Ti3C2 MXene provides a titanium source for TiO2, a carbon source for in situ C-doping, and templates for nanowire aggregates. Under UV light illumination, the optimized Ti3C2/TiO2 exhibits a reaction rate constant 1.5 times that of the benchmark P25 TiO2 nanoparticles, toward photocatalytic degradations of trace phenol in water. The mechanism study suggests that photogenerated holes play key roles on the phenol degradation, either directly oxidizing phenol molecules or in an indirect way through oxidizing first the surface hydroxyl groups. The unreacted Ti3C2 MXene, although with trace amounts, is supposed to facilitate electron transfer, which inhibits charge recombination. The unique nanostructure of layered aggregates of nanowires, abundant surface oxygen vacancies arising from the carbon doping, and probably the Ti3C2/TiO2 heterojunction guarantee the high photocatalytic efficiency toward removals of organic pollutants in water. The photocatalyst also exhibits an activity superior to, or at least comparable to, the benchmark P25 TiO2 toward photodegradations for typical persistent organic pollutants of phenol, dye molecule of rhodamine B, antibiotic of tetracycline, pharmaceutical wastewater of ofloxacin, and pesticide of N,N-dimethylformamide, when evaluated in total organic carbon removal.

16.
Angew Chem Int Ed Engl ; 63(11): e202318777, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38258990

RESUMEN

High-performance pure red perovskite light-emitting diodes (PeLEDs) with an emission wavelength shorter than 650 nm are ideal for wide-color-gamut displays, yet remain an unprecedented challenge to progress. Mixed-halide CsPb(Br/I)3 emitter-based PeLEDs suffer spectral stability induced by halide phase segregation and CsPbI3 quantum dots (QDs) suffer from a compromise between emission wavelength and electroluminescence efficiency. Here, we demonstrate efficient pure red PeLEDs with an emission centered at 638 nm based on PbClx -modified CsPbI3 QDs. A nucleophilic reaction that releases chloride ions and manipulates the ligand equilibrium of the colloidal system is developed to synthesize the pure red emission QDs. The comprehensive structural and spectroscopic characterizations evidence the formation of PbClx outside the CsPbI3 QDs, which regulates exciton recombination and prevents the exciton from dissociation induced by surface defects. In consequence, PeLEDs based on PbClx -modified CsPbI3 QDs with superior optoelectronic properties demonstrate stable electroluminescence spectra at high driving voltages, a record external quantum efficiency of 26.1 %, optimal efficiency roll-off of 16.0 % at 1000 cd m-2 , and a half lifetime of 7.5 hours at 100 cd m-2 , representing the state-of-the-art pure red PeLEDs. This work provides new insight into constructing the carrier-confined structure on perovskite QDs for high-performance PeLEDs.

17.
ACS Nano ; 17(22): 22722-22732, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37955634

RESUMEN

Aqueous Zn metal batteries are considered promising energy storage devices due to their high energy density and low cost. Unfortunately, such great potential is at present obscured by two clouds called dendrite growth and parasitic reactions. Herein, trace amounts of sodium cyclamate (CYC-Na) are introduced as an electrolyte additive, and accordingly, an atomic-pinning-induced interfacial solvation mechanism is proposed to summarize the effect of trace addition. Specifically, coadsorption of -NH- and -SO3 groups overcomes the ring-flipping effect and pins the CYC anion near the Zn anode surface in parallel, which significantly modifies the Zn2+ solvation sheath at the interface. This process homogenizes the surface Zn2+ flux and reduces the H2O and SO42- content on the surface, thus eliminating byproducts and leveling Zn deposition. Cells with trace CYC-Na cycle stably for 3650 h and still cycle for 330 h at high depths of discharge of 56.9%. This work dispels the clouds for efficient trace additives for AZMBs.

18.
Sci Bull (Beijing) ; 68(20): 2354-2361, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37730508

RESUMEN

Blue emissive halide perovskite light-emitting diodes (LEDs) are gaining increasing attention. Reducing defects in halide perovskites to improve the performance of the resulting LEDs is a main research direction, but there are limited passivation methods for achieving efficient and spectrally-stable pure-blue LEDs based on mixed-halide perovskites. In this work, double modification layers containing phosphine oxides, i.e., diphenyl[4-(triphenylsilyl)phenyl]phosphine oxide (TSPO1) and 2,7-bis(diphenylphosphoryl)-9,9'-spirobifluorene (SPPO13), are developed to passivate mixed-halide perovskite quantum dot (QD) films. The comprehensive spectroscopic and structural characterization results indicate the presence of strong interactions between TSPO1/SPPO13 and the QDs. Besides, the combination of the bilayer exhibits a synergistic hole-blocking effect, improving the charge balance of the LEDs. LEDs based on the QD/TSPO1/SPPO13 films deliver stable electroluminesence at 469 nm and present a maximum external quantum efficiency (EQE) and luminance of 4.87% and 560 cd m-2, respectively. Benefiting from the uniform QD/TSPO1/SPPO13 film over a large area, LEDs with an area of 64 mm2 show a maximum EQE of 3.91%, which represents the first efficient large-area mixed-halide perovskite LED with stable pure-blue emission. This work provides a method to improve the perovskite QDs-based film quality and optoelectronic properties, and is a step toward the fabrication of highly-efficient large-area blue perovskite LEDs.

19.
ACS Appl Mater Interfaces ; 15(38): 44942-44952, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37703912

RESUMEN

The development of high-yield, metal-organic framework (MOF)-based water harvesters in arid areas remains challenging due to the absence of effective strategies for enhancing water sorption capacity and kinetics. Herein, we presented a novel strategy for in situ fabrication of calcium chloride (CaCl2) decorated MOF-derived porous sorbents (PCC-42) through pyrolysis Ca-MOF and subsequently hydrochloric acid (HCl) vapor treatment process. The resulting PCC-42 sorbents exhibited a high water adsorption capacity of 3.04 g g-1 at 100% relative humidity (RH), outstanding photothermal performance, and rapid water uptake-release kinetics, surpassing most reported MOFs adsorbents. At 20, 30, 40, and 50% RH, PCC-42 demonstrated water uptake capacity of 0.45, 0.59, 0.76, and 0.9 g g-1, which represented an increase of 421 and 940% (at 20% RH) and 333 and 351% (at 30% RH) compared to Ca-MOF and CaCl2·2H2O, respectively. Approximately 80% of the adsorbed water in PCC-42 could be released under one sun within 50 min. Indoor water harvesting experiments demonstrated that PCC-42 is a promising adsorbent for various humidity environments. Additionally, outdoor solar-driven atmospheric water harvesting (AWH) tests revealed a high daily water production of 1.13 L/kgadsorbent under typical arid conditions (30-60% RH). The proposed strategy helps the design of high-performance adsorbents for solar-driven AWH in arid environments.

20.
Mater Horiz ; 10(12): 5643-5655, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37753658

RESUMEN

Amorphous oxides show great prospects in revolutionizing memristors benefiting from their abundant non-stoichiometric composition. However, an in-depth investigation of the memristive characteristics in amorphous oxides is inadequate and the resistive switching mechanism is still controversial. In this study, aiming to clearly understand the gradual conductance modulation that is deeply bound to the evolution of defects-mainly oxygen vacancies, forming-free memristors based on amorphous ZnAlSnO are fabricated, which exhibit high reproducibility with an initial low-resistance state. Pulse depression reveals the logarithmic-exponential mixed relaxation during RESET owing to the diffusion of oxygen vacancies in orthogonal directions. The remnants of conductive filaments formed through aggregation of oxygen vacancies induced by high-electric-field are identified using ex situ TEM. Especially, the conductance of the filament, including the remnant filament, is larger than that of the hopping conductive channel derived from the diffusion of oxygen vacancies. The Fermi level in the conduction band rationalizes the decay of the high resistance state. Rare oxidation-migration of Au occurs upon device failure, resulting in numerous gold nanoclusters in the functional layer. These comprehensive revelations on the reorganization of oxygen vacancies could provide original ideas for the design of memristors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...