Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Genet ; 31(5): 274-80, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25837375

RESUMEN

Although DNA methylation was originally thought to only affect transcription, emerging evidence shows that it also regulates alternative splicing. Exons, and especially splice sites, have higher levels of DNA methylation than flanking introns, and the splicing of about 22% of alternative exons is regulated by DNA methylation. Two different mechanisms convey DNA methylation information into the regulation of alternative splicing. The first involves modulation of the elongation rate of RNA polymerase II (Pol II) by CCCTC-binding factor (CTCF) and methyl-CpG binding protein 2 (MeCP2); the second involves the formation of a protein bridge by heterochromatin protein 1 (HP1) that recruits splicing factors onto transcribed alternative exons. These two mechanisms, however, regulate only a fraction of such events, implying that more underlying mechanisms remain to be found.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Empalme del ARN , Empalme Alternativo , Animales , Factor de Unión a CCCTC , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Exones , Humanos , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteínas Represoras/metabolismo
2.
Cell Rep ; 10(7): 1122-34, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25704815

RESUMEN

The global impact of DNA methylation on alternative splicing is largely unknown. Using a genome-wide approach in wild-type and methylation-deficient embryonic stem cells, we found that DNA methylation can either enhance or silence exon recognition and affects the splicing of more than 20% of alternative exons. These exons are characterized by distinct genetic and epigenetic signatures. Alternative splicing regulation of a subset of these exons can be explained by heterochromatin protein 1 (HP1), which silences or enhances exon recognition in a position-dependent manner. We constructed an experimental system using site-specific targeting of a methylated/unmethylated gene and demonstrate a direct causal relationship between DNA methylation and alternative splicing. HP1 regulates this gene's alternative splicing in a methylation-dependent manner by recruiting splicing factors to its methylated form. Our results demonstrate DNA methylation's significant global influence on mRNA splicing and identify a specific mechanism of splicing regulation mediated by HP1.


Asunto(s)
Empalme Alternativo , Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN , Animales , Línea Celular , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/genética , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Exones , Genoma , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina , ADN Metiltransferasa 3B
3.
Genome Res ; 23(5): 789-99, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23502848

RESUMEN

DNA methylation is known to regulate transcription and was recently found to be involved in exon recognition via cotranscriptional splicing. We recently observed that exon-intron architectures can be grouped into two classes: one with higher GC content in exons compared to the flanking introns, and the other with similar GC content in exons and introns. The first group has higher nucleosome occupancy on exons than introns, whereas the second group exhibits weak nucleosome marking of exons, suggesting another type of epigenetic marker distinguishes exons from introns when GC content is similar. We find different and specific patterns of DNA methylation in each of the GC architectures; yet in both groups, DNA methylation clearly marks the exons. Exons of the leveled GC architecture exhibit a significantly stronger DNA methylation signal in relation to their flanking introns compared to exons of the differential GC architecture. This is accentuated by a reduction of the DNA methylation level in the intronic sequences in proximity to the splice sites and shows that different epigenetic modifications mark the location of exons already at the DNA level. Also, lower levels of methylated CpGs on alternative exons can successfully distinguish alternative exons from constitutive ones. Three positions at the splice sites show high CpG abundance and accompany elevated nucleosome occupancy in a leveled GC architecture. Overall, these results suggest that DNA methylation affects exon recognition and is influenced by the GC architecture of the exon and flanking introns.


Asunto(s)
Composición de Base , Metilación de ADN/genética , Exones/genética , Intrones/genética , Empalme Alternativo/genética , Secuencia de Bases , Humanos , Nucleosomas/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA