Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomech Eng ; 140(3)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28787472

RESUMEN

Coronally uneven terrain, a common yet challenging feature encountered in daily ambulation, exposes individuals to an increased risk of falling. The foot-ankle complex may adapt to improve balance on uneven terrains, a recovery strategy which may be more challenging in patients with foot-ankle pathologies. A multisegment foot model (MSFM) was used to study the biomechanical adaptations of the foot and ankle joints during a step on a visually obscured, coronally uneven surface. Kinematic, kinetic and in-shoe pressure data were collected as ten participants walked on an instrumented walkway with a surface randomly positioned ±15 deg or 0 deg in the coronal plane. Coronally uneven surfaces altered hindfoot-tibia loading, with more conformation to the surface in early than late stance. Distinct loading changes occurred for the forefoot-hindfoot joint in early and late stance, despite smaller surface conformations. Hindfoot-tibia power at opposite heel contact (@OHC) was generated and increased on both uneven surfaces, whereas forefoot-hindfoot power was absorbed and remained consistent across surfaces. Push-off work increased for the hindfoot-tibia joint on the everted surface and for the forefoot-hindfoot joint on the inverted surface. Net work across joints was generated for both uneven surfaces, while absorbed on flat terrain. The partial decoupling and joint-specific biomechanical adaptations on uneven surfaces suggest that multi-articulating interventions such as prosthetic devices and arthroplasty may improve ambulation for mobility-impaired individuals on coronally uneven terrain.


Asunto(s)
Adaptación Fisiológica , Articulación del Tobillo/fisiología , Articulaciones del Pie/fisiología , Fenómenos Mecánicos , Adulto , Fenómenos Biomecánicos , Femenino , Ortesis del Pié , Humanos , Masculino , Zapatos , Propiedades de Superficie
2.
J Biomech ; 49(13): 2734-2740, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27345107

RESUMEN

Stepping on coronally-uneven and unpredictable terrain is a common gait disturbance that can lead to injurious falls. This study identified the biomechanical response to a step on coronally-uneven and unpredictable terrain through observation of participants traversing a walkway with a middle step that could be blinded to participants, and positioned either 15° inverted, 15° everted, or flush. The isolated disturbance was intended to simulate stepping on a rock, object, or other transient coronal disturbance and allow for observation of the subsequent balance recovery. Gait balance was affected by the disturbance, and was measured by the range of coronal whole-body angular momentum, which compared to unblinded flush, increased during blinded eversion, and decreased during blinded inversion. Analysis of external coronal moments applied to the body about the center-of-mass by the disturbed and recovery legs suggested the disturbed leg contributed more to differences in the range of coronal angular momentum, and thus more to balance recovery. The stepping strategy for the disturbed and recovery steps was measured by mediolateral foot position, and appeared to have been mostly affected by anticipatory actions taken by participants before stepping on the blinded terrain, and not by the terrain angle. In contrast, on the disturbed step, distinct differences between blinded inversion and eversion in the coronal moments of the hip and ankle suggested the hip and ankle joint moment strategies were important for adapting to the terrain angle. A clinical implication of this result was interventions that augment these moments may improve gait balance control on coronally-uneven and unpredictable terrain.


Asunto(s)
Marcha/fisiología , Equilibrio Postural/fisiología , Accidentes por Caídas , Adulto , Articulación del Tobillo/fisiología , Fenómenos Biomecánicos , Femenino , Pie/fisiología , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...