Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 210: 115438, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36716827

RESUMEN

The incidence of ureter obstruction is increasing and patients recovering from this kidney injury often progress to chronic kidney injury. There is evidence that a long-term consequence of recovery from ureter obstruction is an increased risk for salt-sensitive hypertension. A reversal unilateral ureteral obstruction (RUUO) model was used to study long-term kidney injury and salt-sensitive hypertension. In this model, we removed the ureteral obstruction at day 10 in mice. Mice were divided into four groups: (1) normal salt diet, (2) high salt diet, (3) RUUO normal salt diet, and (4) RUUO high salt diet. At day 10, the mice were fed a normal or high salt diet for 4 weeks. Blood pressure was measured, and urine and kidney tissue collected. There was a progressive increase in blood pressure in the RUUO high salt diet group. RUUO high salt group had decreased sodium excretion and glomerular injury. Renal epithelial cell injury was evident in RUUO normal and high salt mice as assessed by neutrophil gelatinase-associated lipocalin (NGAL). Kidney inflammation in the RUUO high salt group involved an increase in F4/80 positive macrophages; however, CD3+ positive T cells were not changed. Importantly, RUUO normal and high salt mice had decreased vascular density. RUUO was also associated with renal fibrosis that was further elevated in RUUO mice fed a high salt diet. Overall, these findings demonstrate long-term renal tubular injury, inflammation, decreased vascular density, and renal fibrosis following reversal of unilateral ureter obstruction that could contribute to impaired sodium excretion and salt-sensitive hypertension.


Asunto(s)
Hipertensión , Obstrucción Ureteral , Ratones , Animales , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/patología , Riñón/patología , Hipertensión/complicaciones , Cloruro de Sodio Dietético/efectos adversos , Sodio , Fibrosis
2.
Prostaglandins Other Lipid Mediat ; 150: 106472, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32569747

RESUMEN

Renal fibrosis is a contributor to chronic kidney disease and an important predictor of long-term prognosis. We developed a dual soluble epoxide hydrolase inhibitor-PPAR-γ agonist (sEHi/PPAR-γ), RB394, and investigated its ability to attenuate renal fibrosis in a mouse unilateral ureteral obstruction (UUO) model. RB394 efficacy was compared to an sEH inhibitor (sEHi), a PPAR-γ agonist rosiglitazone (Rosi), or their combination (sEHi + Rosi). All interventional treatments were administrated in drinking water 3 days after UUO induction surgery and continued for 7 days. UUO mice developed renal fibrosis with higher collagen formation and RB394 significantly attenuated fibrosis (P < 0.05). Renal expression of α-smooth muscle actin (α-SMA) was elevated in UUO mice and all treatments except sEHi significantly attenuated renal α-SMA expression. Renal mRNA expression fibrotic and fibrosis regulators were higher in UUO mice and RB394 and sEHi + Rosi treatments attenuated their expression. Renal inflammation was evident in UUO mice with increased infiltration of CD45 and F4/80 positive cells. RB394 and sEHi + Rosi treatments attenuated renal inflammation in UUO mice. UUO mice had renal tubular and vascular injury. Renal tubular and vascular injuries were attenuated to a greater extent by RB394 and sEHi + Rosi than sEHi or Rosi treatment alone. Renal mRNA expression of oxidative stress markers were significantly higher in UUO mice (P < 0.05). RB394 and sEHi + Rosi attenuated expression of oxidative stress markers to a greater extent than other interventional treatments (P < 0.05). These findings demonstrate that RB394 can attenuate renal fibrosis by reducing renal inflammation, oxidative stress, tubular injury, and vascular injury. In conclusion, RB394 demonstrates exciting potential as a therapeutic for renal fibrosis and chronic kidney disease.


Asunto(s)
Epóxido Hidrolasas/antagonistas & inhibidores , Fibrosis/prevención & control , Enfermedades Renales/prevención & control , PPAR gamma/agonistas , Obstrucción Ureteral/complicaciones , Animales , Modelos Animales de Enfermedad , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Nephrol Dial Transplant ; 33(8): 1333-1343, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29361048

RESUMEN

Background: Hepatorenal syndrome (HRS) is a life-threatening complication of advanced liver cirrhosis that is characterized by hemodynamic alterations in the kidney and other vascular beds. Cytochrome P(CYP)-450 enzymes metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acids. These eicosanoids regulate blood pressure, vascular tone and renal tubular sodium transport under both physiological and pathophysiological states. Methods: Experiments were performed to investigate the role of the CYP system in the pathogenesis of renal dysfunction during cirrhosis. Rats underwent bile duct ligation (BDL) or sham surgery and were studied at 2, 4 and 5 weeks post-surgery. In additional experiments, post-BDL rats were treated with three daily intraperitoneal doses of either the selective epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MSPPOH) or a vehicle, starting on Day 22 after surgery. Results: BDL led to progressive renal dysfunction that was associated with reduced renal cortical perfusion but without any overt histologic changes, consistent with HRS. CYP isoform enzyme expression was significantly altered in BDL rats. In the kidney, CYP2C23 expression was upregulated at both the mRNA and protein levels in BDL rats, while CYP2C11 was downregulated. Histologically, the changes in CYP2C23 and CYP2C11 expression were localized to the renal tubules. EET production was increased in the kidneys of BDL rats as assessed by urinary eicosanoid levels. Finally, treatment with the selective epoxygenase inhibitor MSPPOH significantly reduced renal function and renal cortical perfusion in BDL rats, suggesting a homeostatic role for epoxygenase-derived eicosanoids. Conclusions: The CYP/EET pathway might represent a novel therapeutic target for modulating renal dysfunction in advanced cirrhosis.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Enfermedades Renales/patología , Cirrosis Hepática/complicaciones , Animales , Citocromo P-450 CYP2J2 , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal
4.
PLoS One ; 12(11): e0188797, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29190774

RESUMEN

Acute kidney injury (AKI) is the most common side effect of cisplatin, a widely used chemotherapy drug. Although AKI occurs in up to one third of cancer patients receiving cisplatin, effective renal protective strategies are lacking. Cisplatin targets renal proximal tubular epithelial cells leading to inflammation, reactive oxygen species, tubular cell injury, and eventually cell death. The cholinergic anti-inflammatory pathway is a vagus nerve-mediated reflex that suppresses inflammation via α7 nicotinic acetylcholine receptors (α7nAChRs). Our previous studies demonstrated the renoprotective and anti-inflammatory effects of cholinergic agonists, including GTS-21. Therefore, we examined the effect of GTS-21 on cisplatin-induced AKI. Male C57BL/6 mice received either saline or GTS-21 (4mg/kg, i.p.) twice daily for 4 days before cisplatin and treatment continued through euthanasia; 3 days post-cisplatin mice were euthanized and analyzed for markers of renal injury. GTS-21 significantly reduced cisplatin-induced renal dysfunction and injury (p<0.05). GTS-21 significantly attenuated renal Ptgs2/COX-2 mRNA and IL-6, IL-1ß, and CXCL1 protein expression, as well as neutrophil infiltration after cisplatin. GTS-21 blunted cisplatin-induced renal ERK1/2 activation, as well as renal ATP depletion and apoptosis (p<0.05). GTS-21 suppressed the expression of CTR1, a cisplatin influx transporter and enhanced the expression of cisplatin efflux transporters MRP2, MRP4, and MRP6 (p<0.05). Using breast, colon, and lung cancer cell lines we showed that GTS-21 did not inhibit cisplatin's tumor cell killing activity. GTS-21 protects against cisplatin-AKI by attenuating renal inflammation, ATP depletion and apoptosis, as well as by decreasing renal cisplatin influx and increasing efflux, without impairing cisplatin-mediated tumor cell killing. Our results support further exploring the cholinergic anti-inflammatory pathway for preventing cisplatin-induced AKI.


Asunto(s)
Lesión Renal Aguda/prevención & control , Compuestos de Bencilideno/farmacología , Cisplatino/efectos adversos , Inflamación/prevención & control , Piridinas/farmacología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
5.
Front Pharmacol ; 8: 406, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713267

RESUMEN

Renal fibrosis, which is a critical pathophysiological event in chronic kidney diseases, is associated with renal epithelial-to-mesenchymal transition (EMT). Epoxyeicosatrienoic acids (EETs) are Cyp epoxygenase arachidonic acid metabolites that demonstrate biological actions that result in kidney protection. Herein, we investigated the ability of 14,15-EET and its synthetic analog, EET-A, to reduce kidney fibrosis induced by unilateral ureter obstruction (UUO). C57/BL6 male mice underwent sham or UUO surgical procedures and were treated with 14,15-EET or EET-A in osmotic pump (i.p.) for 10 days following UUO surgery. UUO mice demonstrated renal fibrosis with an 80% higher kidney-collagen positive area and 70% higher α-smooth muscle actin (SMA) positive renal areas compared to the sham group. As a measure of collagen content, kidney hydroxyproline content was also higher in UUO (6.4 ± 0.5 µg/10 mg) compared to sham group (2.5 ± 0.1 µg/10 mg). Along with marked renal fibrosis, UUO mice had reduced renal expression of EET producing Cyp epoxygenase enzymes. Endogenous 14,15-EET or EET-A demonstrated anti-fibrotic action in UUO by reducing kidney-collagen positive area (50-60%), hydroxyproline content (50%), and renal α-SMA positive area (85%). In UUO mice, renal expression of EMT inducers, Snail1 and ZEB1 were higher compared to sham group. Accordingly, renal epithelial marker E-cadherin expression was reduced and mesenchymal marker expression was elevated in the UUO compared to sham mice. Interestingly, EET-A reduced EMT in UUO mice by deceasing renal Snail1 and ZEB1 expression. EET-A treatment also opposed the decrease in renal E-cadherin expression and markedly reduced several prominent renal mesenchymal/myofibroblast markers in UUO mice. Overall, our results demonstrate that EET-A is a novel anti-fibrotic agent that reduces renal fibrosis by decreasing renal EMT.

6.
Am J Physiol Renal Physiol ; 311(3): F576-85, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27358055

RESUMEN

The introduction of calcineurin inhibitors (CNI) into clinical practice in the late 1970s transformed organ transplantation and led to significant improvement in acute rejection episodes. However, despite their significant clinical utility, the use of these agents is hampered by the development of hypertension and nephrotoxicity, which ultimately lead to end-stage kidney disease and overt cardiovascular outcomes. There are currently no effective agents to treat or prevent these complications. Importantly, CNI-free immunosuppressive regimens lack the overall efficacy of CNI-based treatments and put patients at risk of allograft rejection. Cytochrome P-450 epoxygenase metabolites of arachidonic acid, epoxyeicosatrienoic acids (EETs), have potent vasodilator and antihypertensive properties in addition to many cytoprotective effects, but their effects on CNI-induced nephrotoxicity have not been explored. Here, we show that PVPA, a novel, orally active analog of 14,15-EET, effectively prevents the development of hypertension and ameliorates kidney injury in cyclosporine-treated rats. PVPA treatment reduced proteinuria and renal dysfunction induced by cyclosporine. PVPA inhibited inflammatory cell infiltration into the kidney and decreased renal fibrosis. PVPA also reduced tubular epithelial cell apoptosis, attenuated the generation of reactive oxygen species, and modulated the unfolded protein response that is associated with endoplasmic reticulum stress. Consistent with the in vivo data, PVPA attenuated cyclosporine-induced apoptosis of NRK-52E cells in vitro. These data indicate that the cytochrome P-450/EET system offers a novel therapeutic strategy to treat or prevent CNI-induced nephrotoxicity.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Ácidos Araquidónicos/uso terapéutico , Hipertensión/tratamiento farmacológico , Riñón/efectos de los fármacos , Proteinuria/tratamiento farmacológico , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Animales , Apoptosis/efectos de los fármacos , Ácidos Araquidónicos/farmacología , Ciclosporina , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipertensión/inducido químicamente , Hipertensión/patología , Inmunosupresores , Riñón/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Proteinuria/inducido químicamente , Proteinuria/patología , Ratas , Ratas Sprague-Dawley
7.
Am J Physiol Renal Physiol ; 309(1): F35-47, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25947343

RESUMEN

Cisplatin, a commonly used chemotherapeutic for ovarian and other cancers, leads to hypomagnesemia in most patients and causes acute kidney injury (AKI) in 25-30% of patients. Previously, we showed that magnesium deficiency worsens cisplatin-induced AKI and magnesium replacement during cisplatin treatment protects against cisplatin-mediated AKI in non-tumor-bearing mice (Solanki MH, Chatterjee PK, Gupta M, Xue X, Plagov A, Metz MH, Mintz R, Singhal PC, Metz CN. Am J Physiol Renal Physiol 307: F369-F384, 2014). This study investigates the role of magnesium in cisplatin-induced AKI using a human ovarian tumor (A2780) xenograft model in mice and the effect of magnesium status on tumor growth and the chemotherapeutic efficacy of cisplatin in vivo. Tumor progression was unaffected by magnesium status in saline-treated mice. Cisplatin treatment reduced tumor growth in all mice, irrespective of magnesium status. In fact, cisplatin-treated magnesium-supplemented mice had reduced tumor growth after 3 wk compared with cisplatin-treated controls. While magnesium status did not interfere with tumor killing by cisplatin, it significantly affected renal function following cisplatin. Cisplatin-induced AKI was enhanced by magnesium deficiency, as evidenced by increased blood urea nitrogen, creatinine, and other markers of renal damage. This was accompanied by reduced renal mRNA expression of the cisplatin efflux transporter Abcc6. These effects were significantly reversed by magnesium replacement. On the contrary, magnesium status did not affect the mRNA expression of cisplatin uptake or efflux transporters by the tumors in vivo. Finally, magnesium deficiency enhanced platinum accumulation in the kidneys and renal epithelial cells, but not in the A2780 tumor cells. These findings demonstrate the renoprotective role of magnesium during cisplatin AKI, without compromising the chemotherapeutic efficacy of cisplatin in an ovarian tumor-bearing mouse model.


Asunto(s)
Lesión Renal Aguda/prevención & control , Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Magnesio/uso terapéutico , Lesión Renal Aguda/inducido químicamente , Animales , Carcinoma/tratamiento farmacológico , Proteínas de Transporte de Catión/metabolismo , Línea Celular Tumoral , Suplementos Dietéticos , Femenino , Expresión Génica , Humanos , Riñón/metabolismo , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Platino (Metal)/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
PLoS One ; 7(5): e35361, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22586448

RESUMEN

Sepsis is one of the leading causes of acute kidney injury (AKI). Septic patients who develop acute kidney injury (AKI) are at increased risk of death. To date there is no effective treatment for AKI or septic AKI. Based on their anti-inflammatory properties, we examined the effects of nicotinic acetylcholine receptor agonists on renal damage using a mouse model of lipopolysaccharide (LPS)-induced AKI where localized LPS promotes inflammation-mediated kidney damage. Administration of nicotine (1 mg/kg) or GTS-21 (4 mg/kg) significantly abrogated renal leukocyte infiltration (by 40%) and attenuated kidney injury. These renoprotective effects were accompanied by reduced systemic and localized kidney inflammation during LPS-induced AKI. Consistent with these observations, nicotinic agonist treatment significantly decreased renal IκBα degradation and NFκB activation during LPS-induced AKI. Treatment of human kidney cells with nicotinic agonists, an NFκB inhibitor (Bay11), or a proteasome inhibitor (MG132) effectively inhibited their inflammatory responses following stimulation with LPS or TNFα. Renal proteasome activity, a major regulator of NFκB-mediated inflammation, was enhanced by approximately 50% during LPS-induced AKI and elevated proteasome activity was significantly blunted by nicotinic agonist administration in vivo. Taken together, our results identify enhanced renal proteasome activity during LPS-induced AKI and the suppression of both proteasome activity and inflammation by nicotinic agonists to attenuate LPS-induced kidney injury.


Asunto(s)
Lesión Renal Aguda , Compuestos de Bencilideno/administración & dosificación , Antagonistas Nicotínicos/administración & dosificación , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Sustancias Protectoras/administración & dosificación , Piridinas/administración & dosificación , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Animales , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Ratones , Receptores Nicotínicos/metabolismo
9.
J Immunol ; 183(1): 552-9, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19542466

RESUMEN

The cholinergic anti-inflammatory pathway is a physiological mechanism that inhibits cytokine production and diminishes tissue injury during inflammation. Recent studies demonstrate that cholinergic signaling reduces adhesion molecule expression and chemokine production by endothelial cells and suppresses leukocyte migration during inflammation. It is unclear how vagus nerve stimulation regulates leukocyte trafficking because the vagus nerve does not innervate endothelial cells. Using mouse models of leukocyte trafficking, we show that the spleen, which is a major point of control for cholinergic modulation of cytokine production, is essential for vagus nerve-mediated regulation of neutrophil activation and migration. Administration of nicotine, a pharmacologic agonist of the cholinergic anti-inflammatory pathway, significantly reduces levels of CD11b, a beta(2)-integrin involved in cell adhesion and leukocyte chemotaxis, on the surface of neutrophils in a dose-dependent manner and this function requires the spleen. Similarly, vagus nerve stimulation significantly attenuates neutrophil surface CD11b levels only in the presence of an intact and innervated spleen. Further mechanistic studies reveal that nicotine suppresses F-actin polymerization, the rate-limiting step for CD11b surface expression. These studies demonstrate that modulation of leukocyte trafficking via cholinergic signaling to the spleen is a specific, centralized neural pathway positioned to suppress the excessive accumulation of neutrophils at inflammatory sites. Activating this mechanism may have important therapeutic potential for preventing tissue injury during inflammation.


Asunto(s)
Antígeno CD11b/fisiología , Inhibición de Migración Celular/inmunología , Agonistas Colinérgicos/administración & dosificación , Regulación hacia Abajo/inmunología , Infiltración Neutrófila/inmunología , Transducción de Señal/inmunología , Bazo/inmunología , Bazo/inervación , Animales , Antígeno CD11b/biosíntesis , Antígeno CD11b/metabolismo , Carragenina/fisiología , Femenino , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/fisiología , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Nicotina/administración & dosificación , Bazo/citología , Esplenectomía , Nervio Vago/inmunología
10.
Am J Physiol Renal Physiol ; 295(3): F654-61, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18614620

RESUMEN

The cholinergic anti-inflammatory pathway is a mechanism whereby local inflammation is modulated by the brain via the vagus nerve and nicotinic acetylcholine receptors (nAChRs). The nAChR family are ligand-gated ion channels that consist of many different subtypes formed by the specific assembly of five polypeptide subunits including alpha1-10, beta1-4, gamma, delta, and epsilon. The alpha7 receptor (alpha7nAChR) mediates the anti-inflammatory effects of cholinergic stimulation. We recently demonstrated that cholinergic agonists attenuate renal ischemia-reperfusion (I/R) injury in rats. We also showed that tubular epithelial cells express functional nAChRs in vitro. The current studies report the expression, localization, and regulation of the alpha7nAChR in the rat kidney after I/R injury. We also examined, in this model, potential interactions between cholinergic stimulation and the STAT3 pathway, a key signaling cascade that has been linked to alpha7nAChR activation. RT-PCR and immunohistochemistry showed constitutive expression of many nAChR subunits. Immunohistochemistry localized basal alpha7nAChR expression to the endothelium of cortical peritubular capillaries, and its distribution was upregulated after I/R injury. Western blotting also showed an increase in alpha7nAChR subunit protein after renal I/R injury. Interestingly, pretreatment with nicotine, which improves the outcome after renal I/R injury, reduced the alpha7nAChR protein after I/R injury. Finally, we found that I/R injury stimulated the STAT3 pathway, whereas pretreatment with nicotine downregulated its activation. These results suggest that the alpha7nAChR plays an important role in the pathophysiology of renal I/R injury.


Asunto(s)
Agonistas Colinérgicos/farmacología , Riñón/metabolismo , Receptores Nicotínicos/metabolismo , Daño por Reperfusión/metabolismo , Animales , Inmunohistoquímica , Masculino , Nicotina/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...