Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 30(50): e1800923, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30073719

RESUMEN

Due to their transparency and tunable electrical, optical, and magnetic properties, metal oxide thin films and structures have many applications in electro-optical devices. In recent years, solution processing combined with direct-patterning techniques such as micro-/nanomolding, inkjet printing, e-jet printing, e-beam writing, and photopatterning has drawn much attention because of the inexpensive and simple fabrication process that avoids using capital-intensive vacuum deposition systems and chemical etching. Furthermore, practical applications of solution direct-patterning techniques with metal oxide structures are demonstrated in thin-film transistors and biochemical sensors on a wide range of substrates. Since direct-patterning techniques enable low-cost fabrication of nanoscale metal oxide structures, these methods are expected to accelerate the development of nanoscale devices and systems based on metal oxide components in important application fields such as flexible electronics, the Internet of Things (IoT), and human health monitoring. Here, a review of the fabrication procedures, advantages, limitations, and applications of the main direct-patterning methods for making metal oxide structures is presented. The goal is to highlight the examples with the most promising perspective from the recent literature.

2.
Adv Mater ; 24(26): 3509-14, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22678659

RESUMEN

An effective approach to reduce defects and increase electron mobility in a-IGZO thin-film transistors (a-IGZO TFTs) is introduced. A strong reduction layer, calcium, is capped onto the back interface of a-IGZO TFT. After calcium capping, the effective electron mobility of a-IGZO TFT increases from 12 cm(2) V(-1) s(-1) to 160 cm(2) V(-1) s(-1). This high mobility is a new record, which implies that the proposed defect reduction effect is key to improve electron transport in oxide semiconductor materials.


Asunto(s)
Galio/química , Indio/química , Transistores Electrónicos , Óxido de Zinc/química , Transporte de Electrón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA