Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732721

RESUMEN

In this study, an array of environmentally friendly and heavy-duty anticorrosion composite coatings were prepared. The synthesis involved amine-capped aniline trimer (ACAT) produced by an oxidative coupling reaction and graphene oxide (GO) prepared based on Hummer's method, and later, the waterborne epoxy thermoset composite (WETC) coatings were prepared by thermal ring-opening polymerization of EP 147w, a commercial waterborne epoxy resin, in the presence of ACAT and/or GO with zinc dust (ZD). A synergistic effect was observed by replacing a significant amount of the ZD loading in the WETC by simultaneously incorporating a small amount of ACAT and GO. The electrochemical corrosion measurements of the as-prepared WETC coatings indicated that incorporating 5% w/w ACAT or 0.5% w/w GO separately replaced approximately 30% w/w or 15% w/w of the ZD, respectively. Moreover, the WETC coatings containing 5% w/w ACAT and 0.5% w/w GO simultaneously were found to replace 45% w/w of the ZD. A salt spray test based on ASTM B-117 also showed a consistent trend with the electrochemical results. Incorporating small amounts of ACAT and GO in WETC coatings instead of ZD not only maintains the anticorrosion performance but also enhances adhesion and abrasion resistance, as demonstrated by the adhesion and abrasion tests.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37922121

RESUMEN

Reabsorption-free luminescent solar concentrators (LSCs) are crucial ingredients for photovoltaic windows. Atomically precise metal nanoclusters (NCs) with large Stokes-shifted photoluminescence (PL) hold great promise for applications in LSCs. However, a fundamental understanding of the PL mechanism, particularly on the excited-state interaction and exciton kinetics, is still lacking. Herein, we studied the exciton-phonon coupling and singlet/triplet exciton dynamics for gold-doped silver NCs in a solid matrix. Following photoexcitation, the excitons can be self-trapped via strong exciton-phonon coupling. Subsequently, rapid thermal equilibration between the singlet and triplet states occurs due to the coexistence of small energy splitting and spin-orbit coupling. Finally, broadband delayed fluorescence with a large Stokes shift can be generated, namely, self-trapped, thermally equilibrated delayed fluorescence (ST-TEDF). Benefiting from superior ST-TEDF, we demonstrated efficient LSCs with minimized reabsorption.

3.
Polymers (Basel) ; 15(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37376310

RESUMEN

In this study, we developed a series of Au/electroactive polyimide (Au/EPI-5) composite for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using NaBH4 as a reducing agent at room temperature. The electroactive polyimide (EPI-5) synthesis was performed by chemical imidization of its 4,4'-(4.4'-isopropylidene-diphenoxy) bis (phthalic anhydride) (BSAA) and amino-capped aniline pentamer (ACAP). In addition, prepare different concentrations of Au ions through the in-situ redox reaction of EPI-5 to obtain Au nanoparticles (AuNPs) and anchored on the surface of EPI-5 to form series of Au/EPI-5 composite. Using SEM and HR-TEM confirm the particle size (23-113 nm) of the reduced AuNPs increases with the increase of the concentration. Based on CV studies, the redox capability of as-prepared electroactive materials was found to show an increase trend: 1Au/EPI-5 < 3Au/EPI-5 < 5Au/EPI-5. The series of Au/EPI-5 composites showed good stability and catalytic activity for the reaction of 4-NP to 4-AP. Especially, the 5Au/EPI-5 composite shows the highest catalytic activity when applied for the reduction of 4-NP to 4-AP within 17 min. The rate constant and kinetic activity energy were calculated to be 1.1 × 10-3 s-1 and 38.9 kJ/mol, respectively. Following a reusability test repeated 10 times, the 5Au/EPI-5 composite maintained a conversion rate higher than 95%. Finally, this study elaborates the mechanism of the catalytic reduction of 4-NP to 4-AP.

4.
Polymers (Basel) ; 15(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37177188

RESUMEN

Research on the development of flexible silica aerogels (FSAs) has been ongoing due to their excellent thermal insulation, low density, and high elasticity. However, the physical properties of FSAs, such as density, thermal conductivity, mechanical strength, and surface wettability, are highly dependent on the preparation conditions. To achieve the desired properties of FSAs for various applications, it is necessary to develop a method to fine-tune their physical properties. In this paper, two modifiers of methyltrimethoxysilane (MTMS)/trimethylethoxysilane (TMES) were employed to fine-tune the bulk density of a series of flexible silica aerogels (FSAs), reflecting a series of FSAs with fine-tunable physical properties. First, the precursor was synthesized by a click reaction between vinyltrimethoxysilane (VTMS) and 2,2' (ethylenedioxy) diethanethiol (EDDET). The VTMS, EDDET, and the as-prepared precursor were characterized by FT-IR and NMR spectroscopy. Subsequently, the precursor was converted into a series of FSAs (denoted by FSA, FSA-M, and FSA-T) through conventional sol-gel reactions with/without MTMS/TMES. Chemical structures of synthesized FSAs were confirmed by 13C and 29Si solid-state NMR spectroscopy. The porous structure of FSAs was identified by BET and SEM, respectively. Physical properties, such as thermal conductivity, mechanical strength, and surface wettability of FSAs were determined by a Hot Disk, durometer/DMA in compression mode, and contact angle measurements, respectively. This study found FSAs containing none, 1 wt%, 5 wt%, and 10 wt% of MTMS increase the density of FSAs from 0.419 g/cm3 (FSA), 0.423 g/cm3 (FSA-M1), 0.448 g/cm3 (FSA-M5), and 0.456 g/cm3 (FSA-M10). It should be noted that the thermal conductivity, surface hardness, bulk mechanical strength, and hydrophobicity of FSA-Ms of increasing MTMS loading were all found to show a rising trend, while FSA-Ts exhibited lower density. FSA-T10 exhibited lower thermal conductivity, surface hardness, and bulk mechanical strength as compared to FSA. However, it was found to show higher hydrophobicity as compared to that of FSA.

5.
Polymers (Basel) ; 15(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36771986

RESUMEN

In this study, a high-performance H2S sensor that operates at RT was successfully fabricated using biodegradable electroactive polymer-polyurethane-urea (PUU) and PUU-activated-carbon (AC) composites as sensitive material. The PUU was synthesized through the copolymerization of biodegradable polycaprolactone diol and an electroactive amine-capped aniline trimer. AC, with a large surface area of 1620 m2/g and a pore diameter of 2 nm, was derived from coconut-shell waste. The composites, labeled PUU-AC1 and PUU-AC3, were prepared using a physical mixing method. The H2S-gas-sensing performance of PUU-AC0, PUU-AC1, and PUU-AC3 was evaluated. It was found that the PUU sensor demonstrated good H2S-sensing performance, with a sensitivity of 0.1269 ppm-1 H2S. The H2S-gas-sensing results indicated that the PUU-AC composites showed a higher response, compared with PUU-AC0. The enhanced H2S-response of the PUU-AC composites was speculated to be due to the high surface-area and abounding reaction-sites, which accelerated gas diffusion and adsorption and electron transfer. When detecting trace levels of H2S gas at 20 ppm, the sensitivity of the sensors based on PUU-AC1 and PUU-AC3 increased significantly. An observed 1.66 and 2.42 times' enhancement, respectively, in the sensors' sensitivity was evident, compared with PUU-AC0 alone. Moreover, the as-prepared sensors exhibited significantly high selectivity toward H2S, with minimal to almost negligible responses toward other gases, such as SO2, NO2, NH3, CO, and CO2.

6.
ACS Appl Bio Mater ; 6(2): 552-565, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36759183

RESUMEN

The high prevalence of acquiring skin wounds, along with the emergence of antibiotic-resistant strains that lead to infections, impose a threat to the physical, mental, and socioeconomic health of society. Among the wide array of wound dressings developed, hydrogels are regarded as a biomimetic soft matter of choice owing to their ability to provide a moist environment ideal for healing. Herein, neutral glycol chitosan (GC) was cross-linked via imine bonds with varying concentrations of dibenzaldehyde-terminated polyethylene glycol (DP) to give glycol chitosan/dibenzaldehyde-terminated polyethylene glycol hydrogels (GC/DP). These dynamic Schiff base linkages (absorption peak at 1638 cm-1) within the hydrogel structure endowed their ability to recover from damage as characterized by high-low strain exposure in continuous step strain rheology. Along with their good injectability and biodegradability, the hydrogels exhibited remarkable inhibition against E. coli, P. aeruginosa, and S. aureus. GC/DP hydrogels demonstrated high LC50 values in vivo using zebrafish embryos as a model system due to their relative biocompatibility and a remarkable 93.4 ± 0.88% wound contraction at 30-dpw against 49.1 ± 3.40% of the control. To the best of our knowledge, this is the first study that developed injectable glycol chitosan/dibenzaldehyde-terminated polyethylene glycol self-healing hydrogels for application in wound healing with intrinsic bacteriostatic properties against the three bacteria.


Asunto(s)
Escherichia coli , Staphylococcus aureus , Animales , Biomimética , Pez Cebra , Cicatrización de Heridas , Materiales Biocompatibles/farmacología , Polietilenglicoles/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Hidrogeles/química
7.
Polymers (Basel) ; 15(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38232031

RESUMEN

Hydrogen sulfide, a colorless, flammable gas with a distinct rotten egg odor, poses severe health risks in industrial settings. Sensing hydrogen sulfide is crucial for safeguarding worker safety and preventing potential accidents. This study investigated the gas-sensing performance of an electroactive polymer (i.e., polyaniline, PANI) and its composites with active carbon (AC) (i.e., PANI-AC1 and PANI-AC3) toward H2S at room temperature. PANI-AC composites-coated IDE gas sensors were fabricated and their capability of detecting H2S at concentrations ranging from 1 ppm to 30 ppm was tested. The superior gas-sensing performance of the PANI-AC composites can be attributed to the increased surface area of the materials, which provided increased active sites for doping processes and enhanced the sensing capability of the composites. Specifically, the incorporation of AC in the PANI matrix resulted in a substantial improvement in the doping process, which led to stronger gas-sensing responses with higher repeatability and higher stability toward H2S compared to the neat PANI-coated IDE sensor. Furthermore, the as-prepared IDE gas sensor exhibited the best sensing response toward H2S at 60% RH. The use of agricultural-waste coconut husk for the synthesis of these high-performance gas-sensing materials promotes sustainable and eco-friendly practices while improving the detection and monitoring of H2S gas in industrial settings.

8.
Molecules ; 27(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364407

RESUMEN

A series of novel anti-corrosive coatings were synthesized successfully. Water-borne polyurethane (WPU) was synthesized using polyethylene glycol and modified by grafting benzotriazole (BTA) as a pendant group (WPU-g-BTA) and N-alkylated amines (ethylene diamine (A), diethylene triamine (B), triethylene tetramine (C)) as side-chain extenders. Fourier-transform infrared spectroscopy, thermogravimetry, and dynamic mechanical analyses were used to characterize the structural and thermomechanical properties of the samples. A gas permeability analyzer (GPA) was used to evaluate molecular barrier properties. The corrosion inhibition performance of WPU-g-BTA-A, WPU-g-BTA-B, and WPU-g-BTA-C coatings in 3.5 wt% NaCl solution was determined by electrochemical measurements. WPU-g-BTA-C coating synthesized with a high cross-linking density showed superior anticorrosive performance. The as-prepared coatings exhibited a very low icorr value of 0.02 µA.cm-2, a high Ecorr value of -0.02 V, as well as excellent inhibition efficiency (99.972%) and impedance (6.33 Ω) after 30 min of exposure.


Asunto(s)
Poliuretanos , Triazoles , Poliuretanos/química , Corrosión , Agua
9.
Polymers (Basel) ; 14(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36080561

RESUMEN

In this study, electroactive poly (amic acid) (EPAA) and corresponding polyimide (EPI) without or with a sulfonated group (i.e., S-EPAA, and S-EPI) were prepared and applied in electrochemical sensing of ascorbic acid (AA). The electroactive polymers (EAPs) containing EPAA/EPI and S-EPAA/S-EPI were synthesized by using an amine-capped aniline trimer (ACAT) and sulfonated amine-capped aniline trimer (S-ACAT) as an electroactive segment that controlled the redox capability and influenced the degree of sensitivity of the EAPs towards AA. Characterization of the as-prepared EAPs was identified by FTIR spectra. The redox capability of the EAPs was investigated by electrochemical cyclic voltammetric studies. It should be noted that the redox capability of the EAPs was found to show the following trend: S-EPAA > S-EPI > EPAA > EPI. For the electrochemical sensing studies, a sensor constructed from an S-EPAA-modified carbon paste electrode (CPE) demonstrated 2-fold, 1.27-fold, and 1.35-fold higher electro-catalytic activity towards the oxidation of AA, compared to those constructed using a bare CPE, S-EPI-, and EPI/EPAA-modified CPE, respectively. The higher redox capability of S-EPAA-modified CPE exhibited a good electrochemical response towards AA at a low oxidative potential, with good stability and selectivity. Moreover, an electrochemical sensor constructed from S-EPAA-modified CPE was found to reveal better selectivity for a tertiary mixture of AA/DA/UA, as compared to that of EPI-modified, EPAA-modified and S-EPI-modified CPE, based on a series of differential pulse voltammograms.

10.
ACS Appl Bio Mater ; 5(8): 3778-3787, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35831781

RESUMEN

Sulfonated copolyanilines (SPANs), SPAN-40 and SPAN-75, were prepared and applied in this tissue engineering study. SPAN scaffolds (SPANs) and control group polyaniline (PANI) were synthesized by performing oxidative polymerization. To further research the effects of neuron regeneration, PC12 cells were cultured on as-prepared PANI and SPANs with laminin (La) treatment under electrical stimulation. The effects on PC12 cell differentiation were investigated by controlling the amount of sulfonated groups (-SO3H) in the SPAN chain, the electrical stimulation voltage, and the presence or absence of La coating. The adhesion and proliferation of cells increased with the degree of sulfonation; La and electrical stimulation further promoted neuronal cell differentiation as increased neurite length was demonstrated in the micrograph analyses. In summary, the sulfonated copolyaniline coated with La had the best effect on neuronal differentiation under electrical stimulation, suggesting its potential as a substrate for nerve tissue engineering.


Asunto(s)
Laminina , Ingeniería de Tejidos , Compuestos de Anilina/farmacología , Animales , Estimulación Eléctrica , Laminina/farmacología , Células PC12 , Polímeros/farmacología , Ratas
11.
Materials (Basel) ; 16(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36614477

RESUMEN

In this paper, comparative studies of hydrophilic and hydrophobic mesoporous silica particles (MSPs) on the dielectric properties of their derivative polyester imide (PEI) composite membranes were investigated. A series of hydrophilic and hydrophobic MSPs were synthesized with the base-catalyzed sol-gel process of TEOS, MTMS, and APTES at a distinctive feeding ratio with a non-surfactant template of D-(-)-Fructose as the pore-forming agent. Subsequently, the MSPs were blended with the diamine of APAB, followed by introducing the dianhydride of TAHQ with mechanical stirring for 24 h. The obtained viscous solution was subsequently coated onto a copper foil, 36 µm in thickness, followed by performing thermal imidization at specifically programmed heating. The dielectric constant of the prepared membranes was found to show an obvious trend: PEI containing hydrophilic MSPs > PEI > PEI containing hydrophobic MSPs. Moreover, the higher the loading of hydrophilic MSPs, the higher the value of the dielectric constant and loss tangent. On the contrary, the higher the loading of hydrophobic MSPs, the lower the value of the dielectric constant with an almost unchanged loss tangent.

12.
Polymers (Basel) ; 13(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946296

RESUMEN

In this paper, carbon aerogel (CA)-polyaniline (PANI) composites were prepared and first applied in the study of H2S gas sensing. Here, 1 and 3 wt% of as-obtained CA powder were blended with PANI to produce composites, which are denoted by PANI-CA-1 and PANI-CA-3, respectively. For the H2S gas-sensing studies, the interdigitated electrode (IDE) was spin-coated by performing PANI and PANI-CA composite dispersion. The H2S gas-sensing properties were studied in terms of the sensor's sensitivity, selectivity and repeatability. IDE coated with PANI-CA composites, as compared with pristine PANI, achieved higher sensor sensitivity, higher selectivity and good repeatability. Moreover, composites that contain higher loading of CA (e.g., 3 wt%) perform better than composites with lower loading of CA. At 1 ppm, PANI-CA-3 displayed increased sensitivity of 452% at relative humidity of 60% with a fast average response time of 1 s compared to PANI.

13.
Polymers (Basel) ; 13(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451036

RESUMEN

In this present work, an electrochemical sensor was developed for the sensing of uric acid (UA). The sensor was based on a carbon paste electrode (CPE) modified with electroactive polyimide (EPI) synthesized using aniline tetramer (ACAT) decorated with reduced nanoparticles (NPs) of Au, Pt, and Ag. The initial step involved the preparation and characterization of ACAT. Subsequently, the ACAT-based EPI synthesis was performed by chemical imidization of its precursors 4,4'-(4.4'-isopropylidene-diphenoxy) bis (phthalic anhydride) BPADA and ACAT. Then, EPI was doped with distinctive particles of Ag, Pt and Au, and the doped EPIs were abbreviated as EPIS, EPIP and EPIG, respectively. Their structures were characterized by XRD, XPS, and TEM, and the electrochemical properties were determined by cyclic voltammetry and chronoamperometry. Among these evaluated sensors, EPI with Au NPs turned out the best with a sensitivity of 1.53 uA uM-1 UA, a low limit of detection (LOD) of 0.78 uM, and a linear detection range (LDR) of 5-50 uM UA at a low potential value of 310 mV. Additionally, differential pulse voltammetric (DPV) analysis showed that the EPIG sensor showed the best selectivity for a tertiary mixture of UA, dopamine (DA), and ascorbic acid (AA) as compared to EPIP and EPIS.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 247: 119075, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33096391

RESUMEN

The detection of metal ions and amino acids by the aniline oligomer-based receptor has not been reported yet, to the best of our knowledge. In this study, an efficient multifunctional cation-amino acid sensor (CAS) with aniline moiety and chiral thiourea binding site was synthesized by the reaction of aniline trimer and (S)-(+)-1-phenyl ethyl isothiocyanate. CAS can sense Fe3+, Cu2+, Ag+ ions, and L-tryptophan. These results can be recognized by the naked eye. The appropriate pH range for the quantitative analysis of Fe3+, Cu2+, and Ag+ by CAS in DMSO/water (30 vol% water) was evaluated. The interaction between CCS and metal ions was analyzed by 1H NMR titration. The detection limits of CAS for the Cu2+, Ag+, and Fe3+ were 0.214, 0.099, and 0.147 µM, respectively. Moreover, the CASCu2+ complex can act as a turn-on fluorescence sensor for L-tryptophan. On the contrary, there is no response upon the addition of other amino acids, such as L-histidine, L-proline, L-phenylalanine, L-threonine, L-methionine, L-tyrosine, and L-cystine to CASCu2+ complex.


Asunto(s)
Colorimetría , Triptófano , Compuestos de Anilina , Plata , Espectrometría de Fluorescencia
15.
J Phys Chem Lett ; 11(21): 9344-9350, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33090790

RESUMEN

Electronic coupling can be used to tailor electronic states and optical properties of the luminophores. Therefore, electronically coupled systems would provide unique properties, which cannot be achieved by individual constituents. Here, electronically coupled gold nanoclusters (AuNCs) were prepared on the basis of organosilane grafting and a sol-gel-derived porous silica template. After prolonged drying, the formed AuNCs@silica composites exhibited red-shifted, line-width-narrowed, deep-red emission with high quantum yields (QYs) of ∼66% due to electronic-coupling-enhanced radiative rates and covalent-bonding-suppressed nonradiative relaxation. Meanwhile, the absorption maximum was slightly blue-shifted, leading to a large Stokes shift. All experimental findings revealed the formation of electronically coupled AuNC aggregates confined inside the nanopores and bonded to silica matrix. The mechanism is distinctly different from conventional aggregation-enhanced emission. Our work would provide great potential to engineer photophysical properties by controlling the packing modes.

16.
Int J Biol Macromol ; 162: 723-736, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32553972

RESUMEN

Remarkable properties of hydrogels are compromised by failure to recover from damage, bringing their intended functions to an end. To address this, hydrogels can be functionalized with self-healing property to enable them to restore themselves after damage, thus, extending their lifetime. Herein, hydrogels were prepared by cross-linking acrylamide-modified ß-chitin (Am-ß-Chn) with alginate dialdehyde (ADA) to form Schiff base, showing IR characteristic peak at 1650 cm-1, attributed to the stretching vibration of CN. The dynamic Schiff base and H-bond rendered the double crosslinked hydrogels self-healing as demonstrated by continuous step strain rheology. Characterization of the hydrogels revealed excellent biocompatibility, biodegradability, injectability and self-healing properties. Furthermore, the wound healing property of the hydrogels was investigated in vivo using zebrafish as a model system. Indirect application of Am-ß-Chn/ADA hydrogel remarkably led to ~87% wound healing as compared to control which gave ~50%, suggesting that hydrogels are effective in accelerating wound healing. However, a clear understanding of the exact mechanism of its wound healing property remains to be investigated. To the best of our knowledge, this is the first innovation of developing novel double crosslinked Am-ß-Chn/ADA hydrogels with both self-healing and accelerated wound healing properties, directly from marine-food wastes.


Asunto(s)
Alginatos , Materiales Biocompatibles , Quitina , Hidrogeles , Cicatrización de Heridas/efectos de los fármacos , Alginatos/química , Alginatos/farmacología , Animales , Materiales Biocompatibles/farmacología , Quitina/química , Quitina/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Bases de Schiff , Pez Cebra
17.
ACS Biomater Sci Eng ; 6(1): 634-646, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463207

RESUMEN

Electrically conducting polymers have been emerging as intelligent bioactive materials for regulating cell behaviors and bone tissue regeneration. Additionally, poor adhesion between conventional implants and native bone tissue may lead to displacement, local inflammation, and unnecessary secondary surgery. Thus, a conductive bioadhesive with strong adhesion performance provides an effective approach to fulfill fixation and regeneration of comminuted bone fracture. Inspired by mussel chemistry, we designed the conductive copolymers poly{[aniline tetramer methacrylamide]-co-[dopamine methacrylamide]-co-[poly(ethylene glycol) methyl ether methacrylate]} [poly(ATMA-co-DOPAMA-co-PEGMA); AT:conductive aniline tetramer; DOPA:dopamine; PEG:poly(ethylene glycol))] with AT content 3.0, 6.0, and 9.0 mol %, respectively. The adhesive strength of this copolymer was enhanced during tensile process perhaps due to the synergistic effects of H-bonding, π-π interactions, and polymer long-chain entanglement, reaching up to 1.28 MPa with 6 mol % AT. Biological characterizations of preosteoblasts indicated that the bioadhesives exhibited desirable biocompatibility. In addition, the osteogenic differentiation was synergistically enhanced by the conductive substrate and electrical stimulation with a square wave, frequency of 100 Hz, 50% duty cycle, and electrical potential of 500 mV, as indicated by ALP activity, calcium deposition, and expression of osteogenic genes. The ALP activity at 14 days and calcium deposition at 28 days on the 9 mol % AT group were significantly higher than that on PLGA under electrical stimulation. The expression value of OPN for 9 mol % AT group was notably upregulated by 5.9-fold compared with PLGA at 7 days under electrical stimulation. Overall, the conductive polymers with strong adhesion can synergistically upregulate the cellular activity combining with electrical stimulation and might be a promising bioadhesive for orthopedic and dental applications.


Asunto(s)
Adhesivos , Ingeniería de Tejidos , Compuestos de Anilina , Huesos , Osteogénesis , Polímeros
18.
Int J Biol Macromol ; 154: 1565-1575, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31706816

RESUMEN

Chitin is the second most abundant biomass on earth but exploited the least. In this study, wastes from Uroteuthis duvauceli was utilized to extract 38.79 ±â€¯1.38% dry weight of ß-chitin using a new combination of decolorization, demineralization, and deproteinization processes. ß-chitin was then derivatized with acrylamide in an efficient and green aqueous 8 wt% NaOH/4 wt% urea solvent via one-pot etherification. The success of carbamoylethyl ether of chitin and carboxyethyl chitin synthesis was confirmed by FTIR, 1H NMR, 13C NMR, XRD, SEM, TGA, and DSC. The synthesized acrylamide-modified ß-chitin derivatives were shown to exhibit water solubility and lower decomposition temperatures, which are primarily due to the disruption of the crystalline structure of ß-chitin upon its dissolution and modification. In this era of climate change, this desirable strategy of harnessing ß-chitin from wastes and converting it to value-added products is highly sought to mitigate the continuing ecological and economical imbalance brought about by marine-food wastes. To the best of our knowledge, this novel contribution is the first to report biorefinery of squid pens from this particular species and functionalizing it with acrylamide in a facile manner, thus, offering greater potential for future development to biocompatible chitin-based biomaterials intended for industrial, pharmaceutical and biomedical applications.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Cefalópodos/química , Oligosacáridos/química , Oligosacáridos/síntesis química , Residuos , Acrilamida/química , Animales , Técnicas de Química Sintética , Tecnología Química Verde , Solubilidad , Temperatura
19.
Polymers (Basel) ; 11(12)2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766447

RESUMEN

This research paper presents a new application of electroactive polyimide doped with gold nanoparticles (PI/AuNPs) as a chemiresistor sensor for detecting hydrogen sulfide gas. The synthesis of PI/AuNPs was done in a simple 3-step process of polymerization using the as prepared amine-capped aniline trimer (ACAT), followed by imidization, and doping. Spectral analyses via FTIR, LC-MS and 1H-NMR confirmed the formation of amine-capped aniline trimer with a MW of 288 g mol-1. Comparison of ACAT, BSAA, and PI FTIR spectra showed successful polymerization of the last, while XRD validated the incorporation of metal nanoparticles onto the polymer matrix, showing characteristic diffraction peaks corresponding to gold. Furthermore, TEM, and FE-SEM revealed the presence of well-dispersed Au nanoparticles with an average diameter of about 60 nm. The electroactive PI/AuNPs-based sensor showed a sensitivity of 0.29% ppm-1 H2S at a linear concentration range of 50 to 300 ppm H2S (r = 0.9777). The theoretical limit of detection was found at 0.142 ppm or 142 ppb H2S gas. The sensor provided a stable response reading at an average response time of 43 ± 5 s, which was easily recovered after an average time of 99 ± 5 s. The sensor response was highly repeatable and reversible, with RSD values of 8.88%, and 8.60%, respectively. Compared with the performance of the conventional conducting polyaniline also doped with gold nanoparticles (PANI/AuNPs), the fabricated electroactive PI/AuNPs exhibited improved sensing performance making it a potential candidate in monitoring H2S in the environment and for work-related safety.

20.
Macromol Biosci ; 19(10): e1900147, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31486250

RESUMEN

Conducting polymers (CPs) is one of intelligent biomaterials with the specific properties of reversible redox states, which have a significant effects on the cell behaviors and nerve tissue regeneration. However, the effects of CPs with different electrical conductivity on the behaviors of nerve cells are rarely reported. Therefore, a kind of Poly(3-hexylthiophene) (P3HT) with certain molecular weight is synthesized by Kumada catalyst transfer polymerization (KCTP) method and employed to prepare bioabsorbable and electroactive intelligent composites of Poly(3-hexylthiophene)/Poly(glycolide-lactide) (P3HT/PLGA). FeCl3 doping electroactive membranes with different electrical conductivities are prepared to investigate the cell behaviors. On the substrate with higher electrical conductivity, the proliferation of rat adrenal pheochromocytoma cells (PC12 cells) is significantly promoted and neurite length is increased obviously. In particular, the most significant improvements are the neuron gene expression of Synapsin 1 and microtubule-associated protein 2 (MAP2) by the composites with high conductivity. These results suggest that P3HT/PLGA with suitable electrical conductivity have a positive role in promoting neural growth and differentiation, which is promising for advancing potential application of nerve repair and regeneration.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Cloruros , Compuestos Férricos , Regeneración Nerviosa , Tejido Nervioso/metabolismo , Neuronas/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ingeniería de Tejidos , Animales , Cloruros/química , Cloruros/farmacología , Conductividad Eléctrica , Compuestos Férricos/química , Compuestos Férricos/farmacología , Tejido Nervioso/citología , Neuronas/citología , Células PC12 , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...