Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 19(3): e1011224, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36996041

RESUMEN

Mosquito transmission of dengue viruses to humans starts with infection of skin resident cells at the biting site. There is great interest in identifying transmission-enhancing factors in mosquito saliva in order to counteract them. Here we report the discovery of high levels of the anti-immune subgenomic flaviviral RNA (sfRNA) in dengue virus 2-infected mosquito saliva. We established that sfRNA is present in saliva using three different methods: northern blot, RT-qPCR and RNA sequencing. We next show that salivary sfRNA is protected in detergent-sensitive compartments, likely extracellular vesicles. In support of this hypothesis, we visualized viral RNAs in vesicles in mosquito saliva and noted a marked enrichment of signal from 3'UTR sequences, which is consistent with the presence of sfRNA. Furthermore, we show that incubation with mosquito saliva containing higher sfRNA levels results in higher virus infectivity in a human hepatoma cell line and human primary dermal fibroblasts. Transfection of 3'UTR RNA prior to DENV2 infection inhibited type I and III interferon induction and signaling, and enhanced viral replication. Therefore, we posit that sfRNA present in salivary extracellular vesicles is delivered to cells at the biting site to inhibit innate immunity and enhance dengue virus transmission.


Asunto(s)
Aedes , Culicidae , Dengue , Flavivirus , Animales , Humanos , Flavivirus/genética , ARN Subgenómico , Saliva/metabolismo , Regiones no Traducidas 3' , Replicación Viral , ARN Viral/genética , ARN Viral/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36834627

RESUMEN

Before the advent of next-generation sequencing, research on acute myeloid leukemia (AML) mostly centered on protein-coding genes. In recent years, breakthroughs in RNA sequencing technologies and whole transcriptome analysis have led to the discovery that approximately 97.5% of the human genome is transcribed into non-coding RNAs (ncRNAs). This paradigm shift has led to an explosion of research interest in different classes of non-coding RNAs, such as circular RNAs (circRNAs) as well as non-coding untranslated regions (UTRs) of protein-coding messenger RNAs. The critical roles of circRNAs and UTRs in AML pathogenesis have become increasingly apparent. In this review, we discuss the cellular mechanisms of circRNAs and summarize recent studies that reveal their biological roles in AML. Furthermore, we also review the contribution of 3'UTRs to disease progression. Finally, we discuss the potential of circRNAs and 3'UTRs as new biomarkers for disease stratification and/or the prediction of treatment response and targets for the development of RNA-directed therapeutic applications.


Asunto(s)
Leucemia Mieloide Aguda , ARN Circular , Humanos , Regiones no Traducidas 3' , ARN Mensajero/genética , Perfilación de la Expresión Génica , Leucemia Mieloide Aguda/genética
3.
PLoS Pathog ; 18(9): e1010427, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121894

RESUMEN

Dengue viruses (DENV) are expanding global pathogens that are transmitted through the bite of mosquitoes, mostly Aedes aegypti. As RNA viruses, DENV rely on RNA-binding proteins (RBPs) to complete their life cycle. Alternatively, RBPs can act as restriction factors that prevent DENV multiplication. While the importance of RBPs is well-supported in humans, there is a dearth of information about their influence on DENV transmission by mosquitoes. Such knowledge could be harnessed to design novel, effective interventions against DENV. Here, we successfully adapted RNA-affinity chromatography coupled with mass spectrometry-a technique initially developed in mammalian cells-to identify RBPs in Ae. aegypti cells. We identified fourteen RBPs interacting with DENV serotype 2 3'UTR, which is involved in the viral multiplication and produces subgenomic flaviviral RNA (sfRNA). We validated the RNA affinity results for two RBPs by confirming that AePur binds the 3'UTR, whereas AeStaufen interacts with both 3'UTR and sfRNA. Using in vivo functional evaluation, we determined that RBPs like AeRan, AeExoRNase, and AeRNase have pro-viral functions, whereas AeGTPase, AeAtu, and AePur have anti-viral functions in mosquitoes. Furthermore, we showed that human and mosquito Pur homologs have a shared affinity to DENV2 RNA, although the anti-viral effect is specific to the mosquito protein. Importantly, we revealed that AeStaufen mediates a reduction of gRNA and sfRNA copies in several mosquito tissues, including the salivary glands and that AeStaufen-mediated sfRNA reduction diminishes the concentration of transmission-enhancing sfRNA in saliva, thereby revealing AeStaufen's role in DENV transmission. By characterizing the first RBPs that associate with DENV2 3'UTR in mosquitoes, our study unravels new pro- and anti-viral targets for the design of novel therapeutic interventions as well as provides foundation for studying the role of RBPs in virus-vector interactions.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Regiones no Traducidas 3'/genética , Aedes/genética , Animales , Proteínas Portadoras/genética , Virus del Dengue/genética , Humanos , Mamíferos , Mosquitos Vectores/genética , ARN Guía de Kinetoplastida , Proteínas de Unión al ARN/genética , Saliva
4.
Chem Rev ; 118(8): 4448-4482, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29652486

RESUMEN

Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.


Asunto(s)
Flavivirus/fisiología , Flavivirus/clasificación , Flavivirus/genética , Flavivirus/metabolismo , Genes Virales , Interacciones Huésped-Patógeno , Humanos , Proteínas de Unión al ARN/metabolismo , Replicación Viral
5.
DNA Cell Biol ; 37(3): 154-159, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29251994

RESUMEN

Mosquito-borne flaviviruses (MBFVs) are a global public health burden. MBFVs have several unique 3'UTR structures that inhibit the host RNA decay machinery to produce subgenomic flaviviral RNAs (sfRNAs). Number of sfRNA species and their relative quantities are dependent on the 3'UTR tertiary structures and can vary between tissues. Two recent in vivo studies demonstrated that sfRNA enhances mosquito transmission, resulting in increased infection rate of saliva. Transmission efficiency is determined by the immune response. First evidence points to sfRNA interference with the Toll and RNAi immune pathways. However, a more complex picture that includes flexibility in sfRNA production and interaction with immune-related proteins remains to be explored.


Asunto(s)
Virus del Dengue/inmunología , Dengue/transmisión , Mosquitos Vectores/virología , ARN Viral/genética , Regiones no Traducidas 3' , Aedes/inmunología , Aedes/virología , Animales , Culex/inmunología , Culex/virología , Virus del Dengue/genética , Genoma Viral , Interacciones Huésped-Patógeno , Humanos , Secuencias Invertidas Repetidas , Mosquitos Vectores/inmunología , ARN Viral/biosíntesis , Saliva/virología
6.
Pestic Biochem Physiol ; 141: 65-70, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28911742

RESUMEN

Diamondback moth (Plutella xylostella L.) causes enormous damage on cruciferous vegetables and can rapidly develop resistance to all kinds of insecticides. To effectively manage the insecticide resistance of P. xylostella, an understanding of its inheritance and stability is essential. Here we investigated the phenotypic and genotypic basis of mevinphos resistance by crossing two genetically pure lines of P. xylostella, an SHggt wild-type strain and an SHMTCN resistant strain carrying 892T/T, 971C/C, and 1156T/G (TCN) mutations of the acetylcholinesterase 1 gene (Pxace1). Similar median lethal concentrations and degrees of dominance in the reciprocal cross progeny, and no plateau on the log concentration-probit line of F1 backcross and self-cross progeny, suggest that the mevinphos-resistance in P. xylostella is inherited as an autosomal and incomplete dominant trait governed by more than one gene. In the absence of mevinphos exposure, the resistance ratio and Pxace1 mutation frequency declined concomitantly in the SHMTCN strain. After 20-generation relaxation, the mevinphos resistance decreased from 52- to 6-fold and the Pxace1 mutation frequency of the TCN haplotype pair decreased from 100% to 0%. A good correlation was found between the resistance ratio and TCN frequency within the range of 12.5- to 25-fold resistance. Since there was no TCN haplotype pair detected below a resistance level of 12.5-fold, we speculate that resistance mechanisms other than target site insensitivity may exist. These observations are important for the prediction and management of mevinphos and related organophosphate resistance in field populations of P. xylostella.


Asunto(s)
Acetilcolinesterasa/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mevinfos/farmacología , Animales , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/enzimología , Mariposas Nocturnas/genética , Mutación
7.
Pestic Biochem Physiol ; 112: 7-12, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24974111

RESUMEN

The diamondback moth, Plutella xylostella L., is the most destructive insect pest of Brassica crops in the world. It has developed resistance rapidly to almost every insecticide used for its control. Mevinphos, a fast degrading and slow resistance evocating organophosphorus insecticide, has been recommended for controlling P. xylostella in Taiwan for more than 40years. SHM strain of P. xylostella, with ca. 22-fold resistance to this chemical, has been established from a field SH strain by selecting with mevinphos since 1997. Three mutations, i.e., G892T, G971C, and T1156T/G leading to A298S, G324A, and F386F/V amino acid substitutions in acetylcholinesterase1 (AChE1), were identified in these two strains; along with three haplotype pairs and a polymorphic intron in AChE1 gene (ace1). Two genetically pure lines, i.e., an SHggt wild type with intron AS and an SHMTCN mutant carrying G892T, G971C, T1156T/G mutations and intron AR in ace1, were established by single pair mating and haplotype determination. The F1 of SHMTCN strain had 52-fold resistance to mevinphos in comparison with the F1 of SHggt strain. In addition, AChE1 of this SHMTCN population, which exhibited lower maximum velocity (Vmax) and affinity (Km), was less susceptible to the inhibition of mevinphos, with an I50 32-fold higher than that of the SHggt F1 population. These results imply that amino acid substitutions in AChE1 of SHMTCN strain are associated with mevinphos resistance in this insect pest, and this finding is important for insecticide resistance management of P. xylostella in the field.


Asunto(s)
Acetilcolinesterasa/genética , Sustitución de Aminoácidos , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Mevinfos/farmacología , Mariposas Nocturnas/genética , Polimorfismo Genético , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Animales , Biocatálisis/efectos de los fármacos , Brassica/parasitología , Femenino , Haplotipos , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Intrones/genética , Cinética , Masculino , Modelos Moleculares , Mariposas Nocturnas/clasificación , Mutación Missense , Enfermedades de las Plantas/parasitología , Hojas de la Planta/parasitología , Estructura Terciaria de Proteína , Especificidad de la Especie
8.
Opt Express ; 16(8): 5602-8, 2008 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-18542664

RESUMEN

We studied the polarization anisotropy of second harmonic generation (SHG) in polyhedral inclusion bodies (PIBs) of nuclear polyhedrosis viruses (NPV). Due to a body-centered-cubic arrangement of polyhedrin trimers, a characteristic SHG polarization property with a mixture of I23 and I3 symmetry was measured from PIBs. With this characteristic SHG anisotropy, it provides an intrinsic nonlinear signal for virus infection studies in living cells. With multimodal harmonic generation microscopy, we also demonstrated 3D imaging on PIBs of NPV in living cells. The distribution and the number of PIBs in intact infected cells can be revealed without the help of fluorescent labeling.


Asunto(s)
Aumento de la Imagen/instrumentación , Imagenología Tridimensional/métodos , Cuerpos de Inclusión/ultraestructura , Microscopía de Polarización/instrumentación , Nucleopoliedrovirus/ultraestructura , Aumento de la Imagen/métodos , Microscopía de Polarización/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
J Invertebr Pathol ; 96(2): 138-46, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17521666

RESUMEN

Here we describe the establishment of a new cell line, NTU-MV, derived from pupal tissues of an economically important pest, the legume pod borer Maruca vitrata. This cell line contained four major cell types: polymorphic cells, round cells, spindle-shaped cells, and comma cells. The doubling time of MV cells in TNM-FH medium supplemented with 8% FBS at 28 degrees C was 27h. The chromosome numbers of MV cells varied widely from 16 to 268. Compared to other insect cell lines, the MV cell line produced distinct isozyme patterns with esterase, malate dehydrogenase (MDH), and lactate dehydrogenase (LDH). Confirmation that NTU-MV was derived from M. vitrata was demonstrated by showing that the sequence of the internal transcribed spacer regions (ITS) of the MV cells was 98% identical to that of M. vitrata larvae. Two NTU-MV cell strains, NTU-MV1 and NTU-MV56, were selected based on susceptibility to MaviMNPV (M. vitrata multiple nucleopolyhedrovirus). NTU-MV, MV1, and MV56 cells showed a high susceptibility to MaviMNPV and produced high yields of polyhedra (47-50OBs/cell, 4x10(7)-5.96x10(7)OBs/ml) after 2 weeks of MaviMNPV infection. We conclude that the NTU-MV cell line will be a useful tool for studying MaviMNPV as well as for the mass production of MaviMNPV polyhedra for the biocontrol of M. vitrata.


Asunto(s)
Lepidópteros/citología , Lepidópteros/virología , Nucleopoliedrovirus/patogenicidad , Animales , Línea Celular , Cromosomas , Susceptibilidad a Enfermedades , Esterasas/metabolismo , Cuerpos de Inclusión/ultraestructura , Lepidópteros/ultraestructura , Malato Deshidrogenasa/metabolismo , Nucleopoliedrovirus/ultraestructura , Pupa/citología , Pupa/enzimología , Pupa/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA