Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(22): 3079-3082, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38406884

RESUMEN

We present a novel, eco-friendly and one-pot approach for synthesizing unsymmetrical oxalamides with the aid of dichloroacetamide and amine/amides in the presence of CBr4 in a basic medium. The use of water as a potent supplement for the oxygen atom source and the detailed mechanism have been disclosed. Moreover, the protocol involves triple cleavage of CCl2Br and the formation of new C-O/C-N bonds, with the advantage of achieving selective bromination using CBr4 with good to excellent yield under mild conditions. The method also demonstrates promise for industrial use, as proven by its effective implementation in gram-scale synthesis conducted in a batch process, along with its utilization in a continuous-flow system.

2.
Sci Rep ; 9(1): 17154, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748675

RESUMEN

Enamel is the outermost layer of the tooth that protects it from invasion. In general, an acidic environment accelerates tooth demineralization, leading to the formation of cavities. Scanning electron microscopy (SEM) is conventionally used as an in vitro tool for the observation of tooth morphology changes with acid attacks. Yet, SEM has intrinsic limitations for the potential application of in vivo detection in the early demineralization process. In this study, a high-resolution optical coherence tomography (OCT) system with the axial and transverse resolutions of 2.0 and 2.7 µm in teeth has been utilized for characterizing the effect of the acidic environment (simulated by phosphoric acid) on the enamel topology. The scattering coefficient and the surface roughness of enamel can be directly derived from the OCT results, enabling a quantitative evaluation of the topology changes with demineralization. The dynamic process induced by the acid application is also recorded and analyzed with OCT, depicting the evolution of the demineralization process on enamel. Notably, the estimated enamel scattering coefficient and surface roughness significantly increase with the application time of acid and the results illustrate that the values of both parameters after demineralization are significantly larger than those obtained before the demineralization, illustrating both parameters could be effective to differentiate the healthy and demineralized teeth and determine the severity. The obtained results unambiguously illustrate that demineralization of the tooth surface can be successfully detected by OCT and further used as an indicator of early-stage cavity formation.


Asunto(s)
Esmalte Dental/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Desmineralización Dental/diagnóstico por imagen , Desmineralización Dental/diagnóstico , Diagnóstico Precoz , Humanos , Erosión de los Dientes/diagnóstico
3.
Nanoscale ; 11(8): 3534-3545, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30569051

RESUMEN

The application of random lasers has been restricted due to the absence of a well-defined resonant cavity, as the lasing action mainly depends on multiple light scattering induced by intrinsic disorders of the laser medium to establish the required optical feedback that hence increases the difficulty in efficiently tuning and modulating random lasing emissions. This study investigated whether the transport mean free path of emitted photons within disordered scatterers composed of ZnO nanowires is tunable by a curvature bending applied to the flexible polyethylene terephthalate (PET) substrate underneath, thereby creating a unique light source that can be operated above and below the lasing threshold for desirable spectral emissions. For the first time, the developed curvature-tunable random laser is implemented for in vivo biological imaging with much lower speckle noise compared to the non-lasing situation through simple mechanical bending, which is of great potential for studying the fast-moving physiological phenomenon such as blood flow patterns in mouse ear skin. It is expected that the experimental demonstration of the curvature-tunable random laser can provide a new route to develop disorder-based optoelectronic devices.

4.
Nanoscale ; 10(22): 10403-10411, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29671442

RESUMEN

In this study, we experimentally demonstrated a flexible random laser fabricated on a polyethylene terephthalate (PET) substrate with a high degree of tunability in lasing emissions. Random lasing oscillation arises mainly from the resonance coupling between the emitted photons of gain medium (Rhodamine 6G, R6G) and the localized surface plasmon (LSP) of silver nanoprisms (Ag NPRs), which increases the effective cross-section for multiple light scattering, thus stimulating the lasing emissions. More importantly, it was found that the random lasing wavelength is blue-shifted monolithically with the increase in bending strains exerted on the PET substrate, and a maximum shift of ∼15 nm was achieved in the lasing wavelength, when a 50% bending strain was exerted on the PET substrate. Such observation is highly repeatable and reversible, and this validates that we can control the lasing wavelength by simply bending the flexible substrate decorated with the Ag NPRs. The scattering spectrum of the Ag NPRs was obtained using a dark-field microscope to understand the mechanism for the dependence of the wavelength shift on the exerted bending strains. As a result, we believe that the experimental demonstration of tunable lasing emissions based on the revealed structure is expected to open up a new application field of random lasers.

6.
Nano Lett ; 13(6): 2506-15, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23634790

RESUMEN

Highly perfect, twin-free GaAs nanosheets grown on (111)B surfaces by selective area growth (SAG) are demonstrated. In contrast to GaAs nanowires grown by (SAG) in which rotational twins and stacking faults are almost universally observed, twin formation is either suppressed or eliminated within properly oriented nanosheets are grown under a range of growth conditions. A morphology transition in the nanosheets due to twinning results in surface energy reduction, which may also explain the high twin-defect density that occurs within some III­V semiconductor nanostructures, such as GaAs nanowires. Calculations suggest that the surface energy is significantly reduced by the formation of {111}-plane bounded tetrahedra after the morphology transition of nanowire structures. By contrast, owing to the formation of two vertical {11[overline]0} planes which comprise the majority of the total surface energy of nanosheet structures, the energy reduction effect due to the morphology transition is not as dramatic as that for nanowire structures. Furthermore, the surface energy reduction effect is mitigated in longer nanosheets which, in turn, suppresses twinning.

7.
Nanotechnology ; 23(46): 465601, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23093007

RESUMEN

The growth mechanism for the formation of GaN nanorods using metalorganic chemical vapor deposition (MOCVD) selective area growth by pulsed source injection is proposed. The pulsed mode procedure and the kinetic model are discussed and experiments performed to support the model are described. The achievement of rod shape nanostructures grown by the pulsed mode can be attributed to two mechanisms: (1) the differences in the adsorption/desorption behavior of Ga adatoms on the c-plane (0001) and the boundary m-planes {11[overline]00}, and (2) the growth behavior of the semi-polar planes (especially the semi-polar {11[overline]00} plane).

8.
Nano Lett ; 12(9): 4484-9, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22889241

RESUMEN

We report a systematic study of carrier dynamics in Al(x)Ga(1-x)As-passivated GaAs nanowires. With passivation, the minority carrier diffusion length (L(diff)) increases from 30 to 180 nm, as measured by electron beam induced current (EBIC) mapping, and the photoluminescence (PL) lifetime increases from sub-60 ps to 1.3 ns. A 48-fold enhancement in the continuous-wave PL intensity is observed on the same individual nanowire with and without the Al(x)Ga(1-x)As passivation layer, indicating a significant reduction in surface recombination. These results indicate that, in passivated nanowires, the minority carrier lifetime is not limited by twin stacking faults. From the PL lifetime and minority carrier diffusion length, we estimate the surface recombination velocity (SRV) to range from 1.7 × 10(3) to 1.1 × 10(4) cm·s(-1), and the minority carrier mobility µ is estimated to lie in the range from 10.3 to 67.5 cm(2) V(-1) s(-1) for the passivated nanowires.


Asunto(s)
Arsenicales/química , Galio/química , Nanotubos/química , Nanotubos/ultraestructura , Conductividad Eléctrica , Transporte de Electrón , Ensayo de Materiales , Tamaño de la Partícula , Refractometría , Propiedades de Superficie
9.
Nano Lett ; 12(6): 3257-62, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22587013

RESUMEN

Uniform GaN nanorod arrays are grown vertically by selective area growth on (left angle bracket 0001 right angle bracket) substrates. The GaN nanorods present six nonpolar {1⁻100} facets, which serve as growth surfaces for InGaN-based light-emitting diode quantum well active regions. Compared to growth on the polar {0001} plane, the piezoelectric fields in the multiple quantum wells (MQWs) can be eliminated when they are grown on nonpolar planes. The capability of growing ordered GaN nanorod arrays with different rod densities is demonstrated. Light emission from InGaN/GaN MQWs grown on the nonpolar facets is investigated by photoluminescence. Local emission from MQWs grown on different regions of GaN nanorods is studied by cathodoluminescence (CL). The core-shell structure of MQWs grown on GaN nanorods is investigated by cross-sectional transmission electron microscopy in both axial and radial directions. The results show that the active MQWs are predominantly grown on nonpolar planes of GaN nanorods, consistent with the observations from CL. The results suggest that GaN nanorod arrays are suitable growth templates for efficient light-emitting diodes.


Asunto(s)
Arsenicales/química , Cristalización/métodos , Galio/química , Indio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotubos/química , Puntos Cuánticos , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...