Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 314, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959394

RESUMEN

Alanyl-tRNA synthetase (AlaRS) retains a conserved prototype structure throughout its biology, consisting of catalytic, tRNA-recognition, editing, and C-Ala domains. The catalytic and tRNA-recognition domains catalyze aminoacylation, the editing domain hydrolyzes mischarged tRNAAla, and C-Ala-the major tRNA-binding module-targets the elbow of the L-shaped tRNAAla. Interestingly, a mini-AlaRS lacking the editing and C-Ala domains is recovered from the Tupanvirus of the amoeba Acanthamoeba castellanii. Here we show that Tupanvirus AlaRS (TuAlaRS) is phylogenetically related to its host's AlaRS. Despite lacking the conserved amino acid residues responsible for recognition of the identity element of tRNAAla (G3:U70), TuAlaRS still specifically recognized G3:U70-containing tRNAAla. In addition, despite lacking C-Ala, TuAlaRS robustly binds and charges microAla (an RNA substrate corresponding to the acceptor stem of tRNAAla) as well as tRNAAla, indicating that TuAlaRS exclusively targets the acceptor stem. Moreover, this mini-AlaRS could functionally substitute for yeast AlaRS in vivo. This study suggests that TuAlaRS has developed a new tRNA-binding mode to compensate for the loss of C-Ala.


Asunto(s)
Alanina-ARNt Ligasa , Alanina-ARNt Ligasa/genética , Alanina-ARNt Ligasa/química , Alanina-ARNt Ligasa/metabolismo , ARN de Transferencia de Alanina/química , ARN de Transferencia de Alanina/genética , ARN de Transferencia de Alanina/metabolismo , Escherichia coli/genética , ARN de Transferencia/metabolismo
2.
J Biomed Sci ; 29(1): 43, 2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717171

RESUMEN

BACKGROUND: Human traits, diseases susceptibility, and clinical outcomes vary hugely among individuals. Despite a fundamental understanding of genetic (or environmental) contributions, the detailed mechanisms of how genetic variation impacts molecular or cellular behaviours of a gene, and subsequently leads to such variability remain poorly understood. METHODS: Here, in addition to phenome-wide correlations, we leveraged multiomics to exploit mechanistic links, from genetic polymorphism to protein structural or functional changes and a cross-omics perturbation landscape of a germline variant. RESULTS: We identified a missense cis-acting expression quantitative trait locus in CLEC18A (rs75776403) in which the altered residue (T151→M151) disrupts the lipid-binding ability of the protein domain. The altered allele carriage led to a metabolic and proliferative shift, as well as immune deactivation, therefore determines human anthropometrics (body height), kidney, and hematological traits. CONCLUSIONS: Collectively, we uncovered genetic pleiotropy in human complex traits and diseases via CLEC18A rs75776403-regulated pathways.


Asunto(s)
Pleiotropía Genética , Polimorfismo Genético , Alelos , Estudio de Asociación del Genoma Completo , Humanos , Lectinas Tipo C/genética , Fenotipo , Polimorfismo de Nucleótido Simple
3.
J Clin Invest ; 131(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34060491

RESUMEN

Chronic hepatitis B (CHB) infection is rarely eradicated by current antiviral nucleos(t)ide analogues. We found that α2,6-biantennary sialoglycans of HBV surface antigen (HBsAg) bound human SIGLEC-3 (CD33) by IP and ELISA, and the binding affinity between SIGLEC-3 and α2,6-biantennary sialoglycans was determined by biolayer interferometry (equilibrium dissociation constant [KD]: 1.95 × 10-10 ± 0.21 × 10-10 M). Moreover, HBV activated SIGLEC-3 on myeloid cells and induced immunosuppression by stimulating immunoreceptor tyrosine-based inhibitory motif phosphorylation and SHP-1/-2 recruitment via α2,6-biantennary sialoglycans on HBsAg. An antagonistic anti-SIGLEC-3 mAb reversed this effect and enhanced cytokine production in response to TLR-7 agonist GS-9620 in PBMCs from CHB patients. Moreover, anti-SIGLEC-3 mAb alone was able to upregulate the expression of molecules involved in antigen presentation, such as CD80, CD86, CD40, MHC-I, MHC-II, and PD-L1 in CD14+ cells. Furthermore, SIGLEC-3 SNP rs12459419 C, which expressed a higher amount of SIGLEC-3, was associated with increased risk of hepatocellular carcinoma (HCC) in CHB patients (HR: 1.256, 95% CI: 1.027-1.535, P = 0.0266). Thus, blockade of SIGLEC-3 is a promising strategy to reactivate host immunity to HBV and lower the incidence of HCC in the CHB patient population.


Asunto(s)
Presentación de Antígeno , Carcinoma Hepatocelular/inmunología , Antígenos de Superficie de la Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/inmunología , Neoplasias Hepáticas/inmunología , Células Mieloides/inmunología , Proteínas de Neoplasias/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Femenino , Virus de la Hepatitis B/genética , Hepatitis B Crónica/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Masculino , Proteínas de Neoplasias/genética , Polimorfismo de Nucleótido Simple , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética
4.
Plant Physiol ; 173(4): 2148-2162, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28250068

RESUMEN

Most chloroplast proteins are synthesized in the cytosol as higher molecular weight preproteins and imported via the translocons in the outer (TOC) and inner (TIC) envelope membranes of chloroplasts. Toc159 functions as a primary receptor and directly binds preproteins through its dimeric GTPase domain. As a first step toward a molecular understanding of how Toc159 mediates preprotein import, we mapped the preprotein-binding regions on the Toc159 GTPase domain (Toc159G) of pea (Pisum sativum) using cleavage by bound preproteins conjugated with the artificial protease FeBABE and cysteine-cysteine cross-linking. Our results show that residues at the dimer interface and the switch II region of Toc159G are in close proximity to preproteins. The mature portion of preproteins was observed preferentially at the dimer interface, whereas the transit peptide was found at both regions equally. Chloroplasts from transgenic plants expressing engineered Toc159 with a cysteine placed at the dimer interface showed increased cross-linking to bound preproteins. Our data suggest that, during preprotein import, the Toc159G dimer disengages and the dimer interface contacts translocating preproteins, which is consistent with a model in which conformational changes induced by dimer-monomer conversion in Toc159 play a direct role in facilitating preprotein import.


Asunto(s)
Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Precursores de Proteínas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión/genética , Proteínas de Cloroplastos/genética , Electroforesis en Gel de Poliacrilamida , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Mutación , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Multimerización de Proteína , Precursores de Proteínas/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Homología de Secuencia de Aminoácido
5.
Mol Cell Biol ; 34(24): 4500-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25288638

RESUMEN

Nearly 5% of membrane proteins are guided to nuclear, endoplasmic reticulum (ER), mitochondrial, Golgi, or peroxisome membranes by their C-terminal transmembrane domain and are classified as tail-anchored (TA) membrane proteins. In Saccharomyces cerevisiae, the guided entry of TA protein (GET) pathway has been shown to function in the delivery of TA proteins to the ER. The sorting complex for this pathway is comprised of Sgt2, Get4, and Get5 and facilitates the loading of nascent tail-anchored proteins onto the Get3 ATPase. Multiple pulldown assays also indicated that Ybr137wp associates with this complex in vivo. Here, we report a 2.8-Å-resolution crystal structure for Ybr137wp from Saccharomyces cerevisiae. The protein is a decamer in the crystal and also in solution, as observed by size exclusion chromatography and analytical ultracentrifugation. In addition, isothermal titration calorimetry indicated that the C-terminal acidic motif of Ybr137wp interacts with the tetratricopeptide repeat (TPR) domain of Sgt2. Moreover, an in vivo study demonstrated that Ybr137wp is induced in yeast exiting the log phase and ameliorates the defect of TA protein delivery and cell viability derived by the impaired GET system under starvation conditions. Therefore, this study suggests a possible role for Ybr137wp related to targeting of tail-anchored proteins.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cristalografía por Rayos X , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/crecimiento & desarrollo
6.
Plant J ; 75(5): 847-57, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23711301

RESUMEN

Tic110 is a major component of the chloroplast protein import translocon. Two functions with mutually exclusive structures have been proposed for Tic110: a protein-conducting channel with six transmembrane domains and a scaffold with two N-terminal transmembrane domains followed by a large soluble domain for binding transit peptides and other stromal translocon components. To investigate the structure of Tic110, Tic110 from Cyanidioschyzon merolae (CmTic110) was characterized. We constructed three fragments, CmTic110A , CmTic110B and CmTic110C , with increasing N-terminal truncations, to perform small-angle X-ray scattering (SAXS) and X-ray crystallography analyses and Dali structural comparison. Here we report the molecular envelope of CmTic110B and CmTic110C determined by SAXS, and the crystal structure of CmTic110C at 4.2 Å. Our data indicate that the C-terminal half of CmTic110 possesses a rod-shaped helix-repeat structure that is too flattened and elongated to be a channel. The structure is most similar to the HEAT-repeat motif that functions as scaffolds for protein-protein interactions.


Asunto(s)
Proteínas Algáceas/química , Proteínas de Cloroplastos/química , Proteínas de la Membrana/química , Rhodophyta/genética , Proteínas Algáceas/genética , Secuencia de Aminoácidos , Proteínas de Cloroplastos/genética , Cristalografía por Rayos X , Proteínas de la Membrana/genética , Estructura Terciaria de Proteína , Alineación de Secuencia , Análisis de Secuencia de Proteína
7.
J Biochem ; 152(5): 443-51, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22888115

RESUMEN

Chloroplasts protein precursors translated in the cytosol traverse the membranes to reach their intended destination with the help of translocon complexes called translocon at the outer envelope of chloroplasts and translocon at the inner envelope of chloroplasts (TIC), respectively. Two components of the TIC translocon, Tic110 and Tic40, which combine with Hsp93 (ClpC), are involved in protein translocation across the inner membrane into the stroma. The C-terminal NP-repeat domain of Tic40 (Tic40-NP) is homologous to the DP-repeat domain of co-chaperones Hsp70-interacting and Hsp70/Hsp90-organizing proteins. Interaction of Tic40-NP and Hsp93 stimulates ATP hydrolysis of Hsp93, but the hydrolysis is abolished in both N320A and N329A mutants of Tic40-NP. Here, we determined the nuclear magnetic resonance structure of Tic40-NP, which mainly consists of five α-helices stabilized by two hydrophobic cores. In addition, chemical shift perturbation results suggested that some residues at α1 and α5, as well as residues Asn320 and Asn329, cause conformational change on the two mutants, which may subsequently affect their binding to Hsp93. We provide valuable information for further investigating how Tic40-NP interacts with Hsp93.


Asunto(s)
Proteínas de Arabidopsis/química , Cloroplastos/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de la Membrana/química , Chaperonas Moleculares/química , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Choque Térmico/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia
8.
Biochem J ; 416(1): 27-36, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18588504

RESUMEN

GA (glucoamylase) hydrolyses starch and polysaccharides to beta-D-glucose. RoGA (Rhizopus oryzae GA) consists of two functional domains, an N-terminal SBD (starch-binding domain) and a C-terminal catalytic domain, which are connected by an O-glycosylated linker. In the present study, the crystal structures of the SBD from RoGA (RoGACBM21) and the complexes with beta-cyclodextrin (SBD-betaCD) and maltoheptaose (SBD-G7) were determined. Two carbohydrate binding sites, I (Trp(47)) and II (Tyr(32)), were resolved and their binding was co-operative. Besides the hydrophobic interaction, two unique polyN loops comprising consecutive asparagine residues also participate in the sugar binding. A conformational change in Tyr(32) was observed between unliganded and liganded SBDs. To elucidate the mechanism of polysaccharide binding, a number of mutants were constructed and characterized by a quantitative binding isotherm and Scatchard analysis. A possible binding path for long-chain polysaccharides in RoGACBM21 was proposed.


Asunto(s)
Glucano 1,4-alfa-Glucosidasa/química , Rhizopus/enzimología , Almidón/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Glucano 1,4-alfa-Glucosidasa/genética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , beta-Ciclodextrinas/metabolismo
9.
J Biol Chem ; 282(18): 13845-53, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17337454

RESUMEN

Arabidopsis Toc33 (atToc33) is a GTPase and a member of the Toc (translocon at the outer-envelope membrane of chloroplasts) complex that associates with precursor proteins during protein import into chloroplasts. By inference from the crystal structure of psToc34, a homologue in pea, the arginine at residue 130 (Arg(130)) has been implicated in the formation of the atToc33 dimer and in intermolecular GTPase activation within the dimer. Here we report the crystal structure at 3.2-A resolution of an atToc33 mutant, atToc33(R130A), in which Arg(130) was mutated to alanine. Both in solution and in crystals, atToc33(R130A) was present in its monomeric form. In contrast, both wild-type atToc33 and another pea Toc GTPase homologue, pea Toc159 (psToc159), were able to form dimers in solution. Dimeric atToc33 and psToc159 had significantly higher GTPase activity than monomeric atToc33, psToc159, and atToc33(R130A). Molecular modeling using the structures of psToc34 and atToc33(R130A) suggests that, in an architectural dimer of atToc33, Arg(130) from one monomer interacts with the beta-phosphate of GDP and several other amino acids of the other monomer. These results indicate that Arg(130) is critical for dimer formation, which is itself important for GTPase activity. Activation of GTPase activity by dimer formation is likely to be a critical regulatory step in protein import into chloroplasts.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Cloroplastos/enzimología , Guanosina Difosfato/química , Proteínas de la Membrana/química , Sustitución de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Cloroplastos/genética , Cristalografía por Rayos X , Dimerización , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación Missense , Pisum sativum/enzimología , Pisum sativum/genética , Estructura Cuaternaria de Proteína , Transporte de Proteínas/fisiología , Homología de Secuencia de Aminoácido
10.
J Biomed Sci ; 14(4): 505-8, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17394099

RESUMEN

Chloroplasts import more than 90% of their protein constituents from the cytosol. The import is mediated by translocon complexes located in the chloroplast envelope and the stroma. This review focuses on the two GTPases in the Toc (translocon at the outer envelope membrane of chloroplasts) complex. Hypotheses are presented about gating across the outer membrane and the possible functional states of the GTPases.


Asunto(s)
Cloroplastos/enzimología , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Citosol/metabolismo , Dimerización , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Biológicos , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...