Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Occup Environ Hyg ; 19(12): 730-741, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36219680

RESUMEN

With the advent of new sensing technologies and robust field-deployable analyzers, monitoring approaches can now generate valuable hazard information directly in the workplace. This is the case for monitoring respirable dust and respirable crystalline silica concentration levels. Estimating the quartz amount of a respirable dust sample by nondestructive analysis can be carried out using portable Fourier transform infrared spectroscopy (FTIR) units. Real-time respirable dust monitors, combined with small video cameras, allow advanced assessments using the Helmet-CAM methodology. These two field-based monitoring approaches, developed by the National Institute for Occupational Safety and Health (NIOSH), have been trialed in a sandstone quarry. Twenty-six Helmet-CAM sessions were conducted, and forty-one dust samples were collected around the quarry and analyzed on-site during two events. The generated data generated were used to characterize concentration levels for the monitored areas and workers, to identify good practices, and to illustrate activities that could be improved with additional engineered control technologies. Laboratory analysis of the collected samples complemented the field finding and provided an assessment of the performance of the field-based techniques. Only a fraction of the real-time respirable dust monitoring sessions data could be corrected with laboratory analysis. The average correction factor ratio was 5.0. Nevertheless, Helmet-CAM results provided valuable information for each session. The field-based quartz monitoring approach overestimated the concentration by a factor of 1.8, but it successfully assessed the quartz concentration trends in the quarry. The data collected could be used for the determination of a quarry calibration factor for future events. The quartz content in the dust was found to vary from 14% to 100%, and this indicates the need for multiple techniques in the characterization of respirable dust and quartz concentration and exposure. Overall, this study reports the importance of the adoption of field-based monitoring techniques when combined with a proper understanding and knowledge of the capabilities and limitations of each technique.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Humanos , Dióxido de Silicio/análisis , Polvo/análisis , Cuarzo/análisis , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Exposición por Inhalación/prevención & control , Exposición por Inhalación/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ocupacionales del Aire/análisis
2.
Ann Work Expo Health ; 66(8): 1010-1021, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35716068

RESUMEN

In the ever-expanding complexities of the modern-day mining workplace, the continual monitoring of a safe and healthy work environment is a growing challenge. One specific workplace exposure concern is the inhalation of dust containing respirable crystalline silica (RCS) which can lead to silicosis, a potentially fatal lung disease. This is a recognized and regulated health hazard, commonly found in mining. The current methodologies to monitor this type of exposure involve distributed sample collection followed by costly and relatively lengthy follow-up laboratory analysis. To address this concern, we have investigated a data-driven predictive modeling pipeline to predict the amount of silica deposition quickly and accurately on a filter within minutes of sample collection completion. This field-based silica monitoring technique involves the use of small, and easily deployable, Fourier transform infrared (FTIR) spectrometers used for data collection followed by multivariate regression methodologies including Principal Component Analysis (PCA) and Partial Least Squares (PLS). Given the complex nature of respirable dust mixtures, there is an increasing need to account for multiple variables quickly and efficiently during analysis. This analysis consists of several quality control steps including data normalization, PCA and PLS outlier detection, as well as applying correction factors based on the sampler and cassette used for sample collection. While outside the scope of this article to test, these quality control steps will allow for the acceptance of data from many different FTIR instruments and sampling types, thus increasing the overall useability of this method. Additionally, any sample analyzed through the model and validated using a secondary method can be incorporated into the training dataset creating an ever-growing, more robust predictive model. Multivariant predictive modeling has far-reaching implications given its speed, cost, and scalability compared to conventional approaches. This contribution presents the application of PCA and PLS as part of a computational pipeline approach to predict the amount of a deposited mineral of interest using FTIR data. For this specific application, we have developed the model to analyze RCS, although this process can be implemented in the analysis of any IR-active mineral, and this pipeline applied to any FTIR data.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Monitoreo del Ambiente/métodos , Humanos , Exposición por Inhalación/análisis , Minerales/análisis , Exposición Profesional/análisis , Dióxido de Silicio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...