Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 12(1): e8244, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35126997

RESUMEN

Fire is a major selective force on arid grassland communities, favoring traits such as the smoke-induced seed germination response seen in a wide variety of plant species. However, little is known about the relevance of smoke as a cue for plants beyond the seedling stage.We exposed a fire-adapted savanna tree, Vachellia (=Acacia) drepanolobium, to smoke and compared nutrient concentrations in leaf and root tissues to unexposed controls. Experiments were performed on three age cohorts: 2-year-old, 9-month-old, and 3-month-old plants.For the 2-year-old plants exposed to smoke, carbon and nitrogen concentrations were lower in the leaves and higher in the roots than controls. Less pronounced trends were found for boron and magnesium.In contrast, smoke-exposed 3-month-old plants had lower root nitrogen concentrations than controls. No significant differences were found in the 9-month-old plants, and no significant shifts in other nutrient concentrations were observed between plant tissues for any of the three age cohorts. Synthesis: Our findings are consistent with smoke-induced translocation of nutrients from leaves to roots in 2-year-old V. drepanolobium. This could represent a novel form of fire adaptation, with variation over the course of plant development. The translocation differences between age cohorts highlight the need to investigate smoke response in older plants of other species. Accounting for this adaptation could better inform our understanding of savanna community structure and nutrient flows under fire regimes altered by anthropogenic land use and climate change.

2.
Oecologia ; 191(1): 231-240, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31350591

RESUMEN

Fire is a natural feature of many ecosystems, with some vegetation types highly adapted to fire. However, very little is known about the effect of fire on spiders, especially as fires have become more frequent owing to human activity. We determine whether different spider functional guilds (web builders vs. wanderers) respond differently to fires in the sclerophyllous fynbos. We determine also the effect of rockiness as refuge for these guilds and whether it influences their post-fire recovery. There were three site categories of time-since-last fire: 3 months, 1 year, and 7 years. We found that fire caused a decline in spider richness and abundance, with the 3-month category supporting the lowest. In sites that were burned within 1 year, abundance of wanderers was as high as in sites that had 7 years to recover, whereas species richness and abundance of web builders in sites that were burned 1 year ago were as low as in recently burned sites. However, assemblages of wanderers differed among categories, while no differences were observed for web builders, highlighting that wanderers took longer time to recover than web builders. Species richness and abundance of both guilds were not affected by different levels of rockiness. However, rockiness is important in shaping assemblages of wanderers. The results emphasize that the assemblages of greatest conservation concern with increased fire frequencies are wanderers and are candidate surrogates for monitoring post-fire recovery. These results highlight the need to allow fynbos vegetation to recover fully between fire intervals and draws attention to the dangers of frequent unplanned fires.


Asunto(s)
Incendios , Arañas , Animales , Ecosistema , Factores de Tiempo
3.
PLoS One ; 13(4): e0195414, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29614132

RESUMEN

Fire is a major driver in many ecosystems. Yet, little is known about how different ground-living arthropods survive fire. Using three sampling methods, and time-since-fire (last fire event: 3 months, 1 year, and 7 years), we investigate how ground-living arthropod diversity responds to fire, and how species richness, diversity, abundance, and composition of the four dominant taxa: ants, beetles, cockroaches and mites, respond. We did this in the naturally fire-prone Mediterranean-type scrubland vegetation (fynbos) of the Cape Floristic Region. Surprisingly, overall species richness and diversity was the same for all time-since-fire categories. However, when each dominant taxon was analysed separately, effect of fire on species richness and abundance varied among taxa. This emphasizes that many taxa must be investigated to really understand fire-driven events. We also highlight the importance of using different diversity measures, as fire did not influence species richness and abundance of particular taxa, while it affected others, overall greatly affecting assemblages of all taxa. Rockiness affected species richness, abundance and composition of a few taxa. We found that all time-since-fire categories supported distinctive assemblages. Some indicator species occurred across all time-since-fire categories, while others were restricted to a single time-since-fire category, showing that there is a wide range of responses to fire between taxa. Details of local landscape structure, abiotic and biotic, and frequency and intensity of fire add complexity to the fire-arthropod interaction. Overall, we show that the relationship between fire and arthropods is phylogenetically constrained, having been honed by many millennia of fire events, and highly complex. Present-day species manifest a variety of adaptations for surviving the great natural selective force of fire.


Asunto(s)
Artrópodos , Incendios , Animales , Artrópodos/clasificación , Artrópodos/genética , Biodiversidad , Conservación de los Recursos Naturales , Plantas , Suelo , Sudáfrica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...