Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(4): 2509-2519, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38514378

RESUMEN

This study conducted a detailed evaluation of the feasibility of producing cellulose microfibrils (CMF) from a kraft-bleached hardwood pulp at high solid contents with and without pretreatments. CMFs produced by planetary ball milling at solid contents 17 and 28% were compared with those from 1 to 5% under the same milling conditions. Fiber pretreatments using a commercial endoglucanase and mechanical refining using a laboratory PFI mill were also applied before ball milling at a solid content of 28%. Two mechanisms of fiber fibrillation were identified from the results obtained: (i) ball and fiber/fibril interactions─the primary mechanism and (ii) interfiber/fibril frictional and tensional interactions─the secondary mechanism. The secondary mechanism plays an important role only in early-stage fibrillation and became less important as fibrillation proceeded in the later stage toward nanofibrillation. Improving fiber dispersion at lower solid content facilitated fibrillation. Endoglucanase pretreatment substantially shortened fibers to result in a "pulverized-like" CMF with short fibrils at an extended milling time. Mechanical refining of fibers facilitated fibrillation to result in CMFs with a morphology similar to that from runs without any fiber pretreatment but for a much shorter milling time. Both CMF water retention value (WRV) measurements and CMF suspension sedimentation experiments showed results consistent with imaging observations. The insights gained through this study provide relevant information with commercial significance regarding CMF production at high solids, which is not currently available in the literature.


Asunto(s)
Celulasa , Microfibrillas , Carbohidratos , Celulosa
2.
Molecules ; 29(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38398635

RESUMEN

During the past two decades, tremendous progress has been made in the development of biodegradable polymeric materials for various industrial applications, including human and veterinary medicine. They are promising alternatives to commonly used non-degradable polymers to combat the global plastic waste crisis. Among biodegradable polymers used, or potentially applicable to, veterinary medicine are natural polysaccharides, such as chitin, chitosan, and cellulose as well as various polyesters, including poly(ε-caprolactone), polylactic acid, poly(lactic-co-glycolic acid), and polyhydroxyalkanoates produced by bacteria. They can be used as implants, drug carriers, or biomaterials in tissue engineering and wound management. Their use in veterinary practice depends on their biocompatibility, inertness to living tissue, mechanical resistance, and sorption characteristics. They must be designed specifically to fit their purpose, whether it be: (1) facilitating new tissue growth and allowing for controlled interactions with living cells or cell-growth factors, (2) having mechanical properties that address functionality when applied as implants, or (3) having controlled degradability to deliver drugs to their targeted location when applied as drug-delivery vehicles. This paper aims to present recent developments in the research on biodegradable polymers in veterinary medicine and highlight the challenges and future perspectives in this area.


Asunto(s)
Quitosano , Polihidroxialcanoatos , Humanos , Poliésteres , Materiales Biocompatibles , Ingeniería de Tejidos , Sistemas de Liberación de Medicamentos
3.
Sci Adv ; 9(21): eadg1258, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37224258

RESUMEN

Plant cell walls represent the most abundant pool of organic carbon in terrestrial ecosystems but are highly recalcitrant to utilization by microbes and herbivores owing to the physical and chemical barrier provided by lignin biopolymers. Termites are a paradigmatic example of an organism's having evolved the ability to substantially degrade lignified woody plants, yet atomic-scale characterization of lignin depolymerization by termites remains elusive. We report that the phylogenetically derived termite Nasutitermes sp. efficiently degrades lignin via substantial depletion of major interunit linkages and methoxyls by combining isotope-labeled feeding experiments and solution-state and solid-state nuclear magnetic resonance spectroscopy. Exploring the evolutionary origin of lignin depolymerization in termites, we reveal that the early-diverging woodroach Cryptocercus darwini has limited capability in degrading lignocellulose, leaving most polysaccharides intact. Conversely, the phylogenetically basal lineages of "lower" termites are able to disrupt the lignin-polysaccharide inter- and intramolecular bonding while leaving lignin largely intact. These findings advance knowledge on the elusive but efficient delignification in natural systems with implications for next-generation ligninolytic agents.


Asunto(s)
Ecosistema , Isópteros , Animales , Isópteros/genética , Lignina , Madera , Carbono
4.
Molecules ; 27(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557852

RESUMEN

Regarding the limited resources for fossil fuels and increasing global energy demands, greenhouse gas emissions, and climate change, there is a need to find alternative energy sources that are sustainable, environmentally friendly, renewable, and economically viable. In the last several decades, interest in second-generation bioethanol production from non-food lignocellulosic biomass in the form of organic residues rapidly increased because of its abundance, renewability, and low cost. Bioethanol production fits into the strategy of a circular economy and zero waste plans, and using ethanol as an alternative fuel gives the world economy a chance to become independent of the petrochemical industry, providing energy security and environmental safety. However, the conversion of biomass into ethanol is a challenging and multi-stage process because of the variation in the biochemical composition of biomass and the recalcitrance of lignin, the aromatic component of lignocellulose. Therefore, the commercial production of cellulosic ethanol has not yet become well-received commercially, being hampered by high research and production costs, and substantial effort is needed to make it more widespread and profitable. This review summarises the state of the art in bioethanol production from lignocellulosic biomass, highlights the most challenging steps of the process, including pretreatment stages required to fragment biomass components and further enzymatic hydrolysis and fermentation, presents the most recent technological advances to overcome the challenges and high costs, and discusses future perspectives of second-generation biorefineries.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Lignina/química , Biotecnología , Etanol/química , Fermentación , Hidrólisis
5.
Molecules ; 27(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35684343

RESUMEN

Some organosilicon compounds, including alkoxysilanes and siloxanes, proved effective in stabilizing the dimensions of waterlogged archaeological wood during drying, which is essential in the conservation process of ancient artifacts. However, it was difficult to determine a strong correlation between the wood stabilizing effect and the properties of organosilicon compounds, such as molecular weight and size, weight percent gain, and the presence of other potentially reactive groups. Therefore, to better understand the mechanism behind the stabilization effectiveness, the reactivity of organosilicons with wood polymers was studied using a 2D 1H-13C solution-state NMR technique. The results showed an extensive modification of lignin through its demethoxylation and decarbonylation and also the absence of the native cellulose anomeric peak in siloxane-treated wood. The most substantial reactivity between wood polymers and organosilicon was observed with the (3-mercaptopropyl)trimethoxysilane treatment, showing complete removal of lignin side chains, the lowest syringyl/guaiacyl ratio, depolymerization of cellulose and xylan, and reactivity with the C6 primary hydroxyls in cellulose. This may explain the outstanding stabilizing effectiveness of this silane and supports the conclusion that extensive chemical interactions are essential in this process. It also indicates the vital role of a mercapto group in wood stabilization by organosilicons. This 2D NMR technique sheds new light on the chemical mechanisms involved in organosilicon consolidation of wood and reveals what chemical characteristics are essential in developing future conservation treatments.


Asunto(s)
Compuestos de Organosilicio , Madera , Arqueología/métodos , Celulosa/análisis , Lignina/química , Madera/química
6.
Phytopathology ; 112(2): 345-354, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34270907

RESUMEN

The number of reports associated with wood dieback caused by fungi in the Botryosphaeriaceae in numerous perennial crops worldwide has significantly increased in the past years. In this study, we investigated the interactions between the canker pathogen Neofusicoccum parvum and the almond tree host (Prunus dulcis), with an emphasis on varietal resistance and host response at the cell wall biochemical and histological levels. Plant bioassays in a shaded house showed that among the four commonly planted commercial almond cultivars ('Butte', 'Carmel', 'Monterey', and 'Nonpareil'), there was no significant varietal difference with respect to resistance to the pathogen. Gummosis was triggered only by fungal infection, not by wounding. A two-dimensional nuclear magnetic resonance and liquid chromatography determination of cell wall polymers showed that infected almond trees differed significantly in their glycosyl and lignin composition compared with healthy, noninfected trees. Response to fungal infection involved a significant increase in lignin, a decrease in glucans, and an overall enrichment in other carbohydrates with a profile similar to those observed in gums. Histological observations revealed the presence of guaiacyl-rich cell wall reinforcements. Confocal microscopy suggested that N. parvum colonized mainly the lumina of xylem vessels and parenchyma cells, and to a lesser extent the gum ducts. We discuss the relevance of these findings in the context of the compartmentalization of decay in trees model in almond and its potential involvement in the vulnerability of the host toward fungal wood canker diseases.


Asunto(s)
Ascomicetos , Prunus dulcis , Ascomicetos/fisiología , Enfermedades de las Plantas/microbiología , Árboles
7.
Dalton Trans ; 50(46): 17390-17396, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34792048

RESUMEN

Catalytic pathways to produce high carbon number compounds from benzyl phenyl ether require multiple steps to break the aryl etheric carbon-oxygen bonds; these steps are followed by energy-intensive processes to remove oxygen atoms and/or carbon-carbon coupling. Here, we show an upgrading strategy to transform benzyl phenyl ether into large phenolic (C12-C22) compounds by a one-step C-O breaking and C-C coupling catalyzed by metal triflates under a mild condition (100 °C and 1 bar). Hafnium triflate was the most selective for the desired products. In addition, we measured the effect of solvent polarity on the catalytic performance. Solvents with a polarity index of less than 3.4 promoted the catalytic activity and selectivity to C12-C22 phenolic products. These C12-C22 phenolic compounds have potential applications for phenol-formaldehyde polymers, diesel/jet fuels, and liquid organic hydrogen carriers.

8.
Sci Rep ; 10(1): 9919, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32555373

RESUMEN

Our future bioeconomy depends on increased utilization of renewable lignocellulosic biomass. Controlling the diffusion of chemicals, such as inorganic ions, within secondary plant cell walls is central to many biomass applications. However, insufficient understanding of intra-cell-wall diffusion within secondary plant cell walls is hindering the advancement of many lignocellulosic biomass applications. In this work, X-ray fluorescence microscopy was used to measure diffusion constants of K+, Cu2+, and Cl- diffusing through loblolly pine (Pinus taeda) cell wall layers under 70%, 75%, or 80% relative humidity (RH). Results revealed that diffusion constants increased with RH, the larger Cu2+ diffused more slowly than the K+, and the Cl- diffusion constant was the same as that for the counter cation, indicating cations and anions diffused together to maintain charge neutrality. Comparison with electrical conductivity measurements showed that conductivity is being controlled by ion mobility over these RH. The results further support that intra-cell-wall diffusion of inorganic ions is a Fickian diffusion process occurring through rubbery amorphous polysaccharides, which contradicts previous assertions that intra-cell-wall diffusion is an aqueous process occurring through water pathways. Researchers can now utilize polymer science approaches to engineer the molecular architecture of lignocellulosic biomass to optimize properties for specific end uses.

9.
Sci Adv ; 3(9): e1701735, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28929139

RESUMEN

We report the discovery of the hydrotropic properties of a recyclable aromatic acid, p-toluenesulfonic acid (p-TsOH), for potentially low-cost and efficient fractionation of wood through rapid and near-complete dissolution of lignin. Approximately 90% of poplar wood (NE222) lignin can be dissolved at 80°C in 20 min. Equivalent delignification using known hydrotropes, such as aromatic salts, can be achieved only at 150°C or higher for more than 10 hours or at 150°C for 2 hours with alkaline pulping. p-TsOH fractionated wood into two fractions: (i) a primarily cellulose-rich water-insoluble solid fraction that can be used for the production of high-value building blocks, such as dissolving pulp fibers, lignocellulosic nanomaterials, and/or sugars through subsequent enzymatic hydrolysis; and (ii) a spent acid liquor stream containing mainly dissolved lignin that can be easily precipitated as lignin nanoparticles by diluting the spent acid liquor to below the minimal hydrotrope concentration. Our nuclear magnetic resonance analyses of the dissolved lignin revealed that p-TsOH can depolymerize lignin via ether bond cleavage and can separate carbohydrate-free lignin from the wood. p-TsOH has a relatively low water solubility, which can facilitate efficient recovery using commercially proven crystallization technology by cooling the concentrated spent acid solution to ambient temperatures to achieve environmental sustainability through recycling of p-TsOH.

10.
Proc Natl Acad Sci U S A ; 114(18): 4709-4714, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28424249

RESUMEN

Depolymerizing lignin, the complex phenolic polymer fortifying plant cell walls, is an essential but challenging starting point for the lignocellulosics industries. The variety of ether- and carbon-carbon interunit linkages produced via radical coupling during lignification limit chemical and biological depolymerization efficiency. In an ancient fungus-cultivating termite system, we reveal unprecedentedly rapid lignin depolymerization and degradation by combining laboratory feeding experiments, lignocellulosic compositional measurements, electron microscopy, 2D-NMR, and thermochemolysis. In a gut transit time of under 3.5 h, in young worker termites, poplar lignin sidechains are extensively cleaved and the polymer is significantly depleted, leaving a residue almost completely devoid of various condensed units that are traditionally recognized to be the most recalcitrant. Subsequently, the fungus-comb microbiome preferentially uses xylose and cleaves polysaccharides, thus facilitating final utilization of easily digestible oligosaccharides by old worker termites. This complementary symbiotic pretreatment process in the fungus-growing termite symbiosis reveals a previously unappreciated natural system for efficient lignocellulose degradation.


Asunto(s)
Proteínas Fúngicas/metabolismo , Isópteros , Lacasa/metabolismo , Lignina/metabolismo , Termitomyces/enzimología , Animales
11.
ACS Appl Mater Interfaces ; 7(12): 6584-9, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25756624

RESUMEN

Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenol-formaldehyde (BrPF) into wood cell walls. Cell wall infiltration of five BrPF adhesives with different average molecular weights (MWs) was mapped. Nanoindentation on the same cell walls was performed to assess the effects of BrPF infiltration on cell wall hygromechanical properties. For the same amount of weight uptake, lower MW BrPF adhesives were found to be more effective at decreasing moisture-induced mechanical softening. This greater effectiveness of lower MW phenolic adhesives likely resulted from their ability to more intimately associate with water sorption sites in the wood polymers. Evidence also suggests that a BrPF interpenetrating polymer network (IPN) formed within the wood polymers, which might also decrease moisture sorption by mechanically restraining wood polymers during swelling.


Asunto(s)
Pared Celular/química , Formaldehído/química , Fenol/química , Madera/química , Adhesivos/química , Microscopía Fluorescente , Sincrotrones
12.
Appl Environ Microbiol ; 80(24): 7536-44, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25261514

RESUMEN

The white rot basidiomycete Ceriporiopsis subvermispora delignifies wood selectively and has potential biotechnological applications. Its ability to remove lignin before the substrate porosity has increased enough to admit enzymes suggests that small diffusible oxidants contribute to delignification. A key question is whether these unidentified oxidants attack lignin via single-electron transfer (SET), in which case they are expected to cleave its propyl side chains between Cα and Cß and to oxidize the threo-diastereomer of its predominating ß-O-4-linked structures more extensively than the corresponding erythro-diastereomer. We used two-dimensional solution-state nuclear magnetic resonance (NMR) techniques to look for changes in partially biodegraded lignin extracted from spruce wood after white rot caused by C. subvermispora. The results showed that (i) benzoic acid residues indicative of Cα-Cß cleavage were the major identifiable truncated structures in lignin after decay and (ii) depletion of ß-O-4-linked units was markedly diastereoselective with a threo preference. The less selective delignifier Phanerochaete chrysosporium also exhibited this diastereoselectivity on spruce, and a P. chrysosporium lignin peroxidase operating in conjunction with the P. chrysosporium metabolite veratryl alcohol did likewise when cleaving synthetic lignin in vitro. However, C. subvermispora was significantly more diastereoselective than P. chrysosporium or lignin peroxidase-veratryl alcohol. Our results show that the ligninolytic oxidants of C. subvermispora are collectively more diastereoselective than currently known fungal ligninolytic oxidants and suggest that SET oxidation is one of the chemical mechanisms involved.


Asunto(s)
Coriolaceae/metabolismo , Lignina/metabolismo , Oxidantes/química , Oxidantes/metabolismo , Picea/microbiología , Madera/microbiología , Biodegradación Ambiental , Coriolaceae/enzimología , Proteínas Fúngicas/metabolismo , Lignina/química , Estructura Molecular , Oxidación-Reducción , Peroxidasas/metabolismo , Phanerochaete/metabolismo , Picea/metabolismo , Madera/metabolismo
13.
J Agric Food Chem ; 62(27): 6362-74, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24967726

RESUMEN

The anaerobic decomposition of plant biomass is an important aspect of global organic carbon cycling. While the anaerobic metabolism of cellulose and hemicelluloses to methane and carbon dioxide are well-understood, evidence for the initial stages of lignin decomposition is fragmentary. The objective of this study was to look for evidence of chemical transformations of lignin in woody tissues [hardwood (HW), softwood (SW), and old newsprint (ONP)] after anaerobic decomposition using Klason and acid-soluble lignin, CuO oxidation, and 2D NMR. Tests were conducted under mesophilic and thermophilic conditions, and lignin associations with structural carbohydrates are retained. For HW and ONP, the carbon losses could be attributed to cellulose and hemicelluloses, while carbon loss in SW was attributable to an uncharacterized fraction (e.g., extractives etc.). The 2D NMR and chemical degradation methods revealed slight reductions in ß-O-4 linkages for HW and ONP, with no depolymerization of lignin in any substrate.


Asunto(s)
Celulosa/química , Lignina/química , Plantas/química , Madera/química , Anaerobiosis , Biotecnología , Espectroscopía de Resonancia Magnética
14.
Environ Microbiol ; 13(4): 1091-100, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21261800

RESUMEN

Lignocellulose biodegradation, an essential step in terrestrial carbon cycling, generally involves removal of the recalcitrant lignin barrier that otherwise prevents infiltration by microbial polysaccharide hydrolases. However, fungi that cause brown rot of wood, a major route for biomass recycling in coniferous forests, utilize wood polysaccharides efficiently while removing little of the lignin. The mechanism by which these basidiomycetes breach the lignin remains unclear. We used recently developed methods for solubilization and multidimensional (1) H-(13) C solution-state NMR spectroscopy of ball-milled lignocellulose to analyse aspen wood degraded by Postia placenta. The results showed that decay decreased the content of the principal arylglycerol-ß-aryl ether interunit linkage in the lignin by more than half, while increasing the frequency of several truncated lignin structures roughly fourfold over the level found in sound aspen. These new end-groups, consisting of benzaldehydes, benzoic acids and phenylglycerols, accounted for 6-7% of all original lignin subunits. Our results provide evidence that brown rot by P. placenta results in significant ligninolysis, which might enable infiltration of the wood by polysaccharide hydrolases even though the partially degraded lignin remains in situ. Recent work has revealed that the P. placenta genome encodes no ligninolytic peroxidases, but has also shown that this fungus produces an extracellular Fenton system. It is accordingly likely that P. placenta employs electrophilic reactive oxygen species such as hydroxyl radicals to disrupt lignin in wood.


Asunto(s)
Basidiomycota/metabolismo , Lignina/química , Madera/química , Biodegradación Ambiental , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Populus/química , Populus/microbiología , Madera/microbiología
15.
Magn Reson Chem ; 46(6): 508-17, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18383438

RESUMEN

A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide-d(6) and 1-methylimidazole-d(6) in a ratio of 4:1 (v/v), keeping wood component structures mainly intact in their near-native state. Two-dimensional NMR experiments, using gradient-HSQC (heteronuclear single quantum coherence) 1-bond (13)C--(1)H correlation spectroscopy, on nonderivatized cell wall material from a representative gymnosperm pinus taeda (loblolly pine), an angiosperm Populus tremuloides (quaking aspen), and a herbaceous plant Hibiscus cannabinus (kenaf) demonstrate the efficacy of the system. We describe a method to synthesize 1-methylimidazole-d(6) with a high degree of perdeuteration, thus allowing cell wall dissolution and NMR characterization of nonderivatized plant cell wall structures.


Asunto(s)
Fraccionamiento Celular/métodos , Membrana Celular/química , Resonancia Magnética Nuclear Biomolecular/métodos , Extractos Vegetales/análisis , Extractos Vegetales/química , Manejo de Especímenes/métodos , Sensibilidad y Especificidad , Solventes/química
16.
Environ Microbiol ; 10(7): 1844-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18363712

RESUMEN

Biodegradation by brown-rot fungi is quantitatively one of the most important fates of lignocellulose in nature. It has long been thought that these basidiomycetes do not degrade lignin significantly, and that their activities on this abundant aromatic biopolymer are limited to minor oxidative modifications. Here we have applied a new technique for the complete solubilization of lignocellulose to show, by one-bond (1)H-(13)C correlation nuclear magnetic resonance spectroscopy, that brown rot of spruce wood by Gloeophyllum trabeum resulted in a marked, non-selective depletion of all intermonomer side-chain linkages in the lignin. The resulting polymer retained most of its original aromatic residues and was probably interconnected by new linkages that lack hydrogens and are consequently invisible in one-bond (1)H-(13)C correlation spectra. Additional work is needed to characterize these linkages, but it is already clear that the aromatic polymer remaining after extensive brown rot is no longer recognizable as lignin.


Asunto(s)
Basidiomycota/metabolismo , Lignina/metabolismo , Basidiomycota/crecimiento & desarrollo , Biodegradación Ambiental , Lignina/química , Madera/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...